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Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases, and the discovery of knowledge from life sciences
data in order to unravel the mysteries of biological function, leading to new drugs
and therapies for human disease. Life sciences data come in the form of biological
sequences, structures, pathways, or literature. One major aspect of discovering
biological knowledge is to search, predict, or model specific patterns present in
a given dataset and then to interpret those patterns. Computer science methods
such as evolutionary computation, machine learning, and data mining all have
a great deal to offer the field of bioinformatics. The goal of the Fifth European
Conference on Evolutionary Computation, Machine Learning, and Data Mining
in Bioinformatics (EvoBIO 2007) was to bring experts in computer science to-
gether with experts in bioinformatics and the biological sciences to explore new
and novel methods for solving complex biological problems.

The fifth EvoBIO conference was held in Valencia, Spain during April 11-13,
2007 at the Universidad Politecnica de Valencia. EvioBIO 2007 was held jointly
with the Tenth European Conference on Genetic Programming (EuroGP 2007),
the Seventh European Conference on Evolutionary Computation in Combinato-
rial Optimisation (EvoCOP 2007), and the Evo Workshops. Collectively, the con-
ferences and workshops are organized under the name Evo* (www.evostar.org).

EvoBIO, held annually as a workshop since 2003, became a conference in 2007
and it is now the premiere European event for those interested in the interface be-
tween evolutionary computation, machine learning, data mining, bioinformatics,
and computational biology. All papers in this book were presented at EvoBIO
2007 and responded to a call for papers that included topics of interest such
as biomarker discovery, cell simulation and modeling, ecological modeling, flux-
omics, gene networks, biotechnology, metabolomics, microarray analysis, phy-
logenetics, protein interactions, proteomics, sequence analysis and alignment,
and systems biology. A total of 60 papers were submitted to the conference for
double-blind peer-review. Of those, 28 (46.7%) were accepted.

We would first and foremost like to thank all authors who spent time and
effort to make important contributions to this book. We would like to thank the
members of the Program Committee for their expert evaluation of the submitted
papers. Moreover, we would like to thank Jennifer Willies for her tremendous
administrative help and coordination, Anna Isabel Esparcia-Alcázar for serving
as the Local Chair, Leonardo Vanneschi for serving as Evo* Publicity Chair,
Marc Schoenauer and the MyReview team (http://myreview.lri.fr/) for the
conference management system.

We would also like to acknowledge the following organizations. The Univer-
sidad Politécnica de Valencia, Spain for their institutional and financial sup-
port, and for providing premises and administrative assistance; the Instituto
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Tecnológico de Informática in Valencia, for cooperation and help with local ar-
rangements; the Spanish Ministerio de Educación y Ciencia, for their financial
support; and the Centre for Emergent Computing at Napier University in Edin-
burgh, Scotland for administrative support and event coordination.

Finally, we hope that you will consider contributing to EvoBIO 2008.

February 2007 Elena Marchiori
Jason H. Moore

Jagath C. Rajapakse
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Jin-Kao Hao

Modeling the Shoot Apical Meristem in A. thaliana: Parameter
Estimation for Spatial Pattern Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Tim Hohm and Eckart Zitzler

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



X Table of Contents

Evolutionary Search for Improved Path Diagrams . . . . . . . . . . . . . . . . . . . . 114
Kim Laurio, Thomas Svensson, Mats Jirstrand, Patric Nilsson,
Jonas Gamalielsson, and Björn Olsson

Simplifying Amino Acid Alphabets Using a Genetic Algorithm and
Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Jacek Lenckowski and Krzysztof Walczak

Towards Evolutionary Network Reconstruction Tools for Systems
Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Thorsten Lenser, Thomas Hinze, Bashar Ibrahim, and Peter Dittrich

A Gaussian Evolutionary Method for Predicting Protein-Protein
Interaction Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Kang-Ping Liu and Jinn-Moon Yang

Bio-mimetic Evolutionary Reverse Engineering of Genetic Regulatory
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Daniel Marbach, Claudio Mattiussi, and Dario Floreano

Tuning ReliefF for Genome-Wide Genetic Analysis . . . . . . . . . . . . . . . . . . . 166
Jason H. Moore and Bill C. White

Dinucleotide Step Parameterization of Pre-miRNAs Using
Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Jin-Wu Nam, In-Hee Lee, Kyu-Baek Hwang, Seong-Bae Park, and
Byoung-Tak Zhang

Amino Acid Features for Prediction of Protein-Protein Interface
Residues with Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Minh N. Nguyen, Jagath C. Rajapakse, and Kai-Bo Duan

Predicting HIV Protease-Cleavable Peptides by Discrete Support
Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Carlotta Orsenigo and Carlo Vercellis

Inverse Protein Folding on 2D Off-Lattice Model: Initial Results and
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

David Pelta and Alberto Carrascal

Virtual Error: A New Measure for Evolutionary Biclustering . . . . . . . . . . . 217
Beatriz Pontes, Federico Divina, Raúl Giráldez, and
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Identifying Regulatory Sites Using

Neighborhood Species

Claudia Angelini1, Luisa Cutillo1, Italia De Feis1, Richard van der Wath2,
and Pietro Lio’2,�

1 Istituto per le Applicazioni del Calcolo ”Mauro Picone” CNR, Napoly Italy
c.angelini@iac.cnr.it, cutillo@na.iac.cnr.it, i.defeis@iac.cnr.it

2 Computer Laboratory, University of Cambridge, Cambridge UK
rcv23@cam.ac.uk, pl219@cam.ac.uk

Abstract. The annotation of transcription binding sites in new se-
quenced genomes is an important and challenging problem. We have
previously shown how a regression model that linearly relates gene ex-
pression levels to the matching scores of nucleotide patterns allows us
to identify DNA-binding sites from a collection of co-regulated genes
and their nearby non-coding DNA sequences. Our methodology uses
Bayesian models and stochastic search techniques to select transcrip-
tion factor binding site candidates. Here we show that this methodology
allows us to identify binding sites in nearby species. We present examples
of annotation crossing from Schizosaccharomyces pombe to Schizosaccha-
romyces japonicus. We found that the eng1 motif is also regulating a set
of 9 genes in S. japonicus. Our framework may have an effective interest
in conveying information in the annotation process of a new species. Fi-
nally we discuss a number of statistical and biological issues related to
the identification of binding sites through covariates of genes expression
and sequences.

1 Introduction

The identification of the repertoire of regulatory elements in a genome is one
of the major challenges in modern biology. Gene transcription is determined by
the interaction between transcription factors and their binding sites, called mo-
tifs or cis-regulatory elements. In eukaryotes the regulation of gene expression
is highly complex and often occurs through the coordinated action of multiple
transcription factors. This combinatorial regulation has several advantages; it
controls gene expression in response to a variety of signals from the environment
and allows the use of a limited number of transcription factors to create many
combinations of regulators. Identification of the regulatory elements is necessary
for understanding mechanisms of cellular processes. In eukaryotes these sites
comprise short DNA stretches often found within non-coding upstream regions.
DNA microarrays provide a simple and natural vehicle for exploring the regula-
tion of thousands of genes and their interactions. Genes with similar expression
� Corresponding author.

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 C. Angelini et al.

profiles are likely to have similar regulatory mechanisms. A close inspection of
their promoter sequences may therefore reveal nucleotide patterns that are rel-
evant to their regulation.

In order to identify regulative sites several authors have used the following
strategy: 1) candidate motifs can be obtained from the upstream regions of the
most induced or most repressed genes; 2) a score can be assigned to reflect
the matching of each motif to a particular upstream sequence; 3) regression
analysis and variable selection methods can be used to detect sets of motifs
acting together to affect the expression of genes [4,5,8].

Most of the current focus on microarray analysis is on integrating results
from repeated experiments using the same species or using different species. This
paper is extending this focus to transcription factor binding site identification.
Following [8], we propose the use of Bayesian variable selection models to use
the gene expression of an organism to find transcription binding sites of a closely
related species or of a different strain. Variable selection methods use a latent
binary vector to index all possible sets of variables (patterns). Stochastic search
techniques are then used to explore the high-dimensional variable space and
identify sets that best predict the response variable (expression). The method
provides joint posterior probabilities of sets of patterns, as well as marginal
posterior probabilities for the inclusion of single nucleotide patterns. We have
chosen to exemplify our methodology using S. japonicus and S. pombe genomes
and microarray data from cell cycle-regulated gene experiments [6].

Similar to a better known Schizosaccharomyces S. pombe, which has been a
major model organism for cell cycle and cell biology research for thirty years,
S. japonicus is a simple, unicellular yeast. Unlike the cousin, it readily adopts
a invasive, hyphal growth form. Such growth is an important virulence trait in
pathogenic fungi, making S. japonicus a potentially important model for fungal
disease. The comparison of the S. pombe genome, which was sequenced several
years ago, with those of its close relatives will greatly improve our understanding
of the genomes and the proteins they encode. In addition, the three fission yeasts
form an early-branching clade among the Ascomycete (ascus-forming) fungi,
which includes yeast, hyphal fungi, and truffles [2]. Although a great deal of
molecular information is available from S. pombe, a model eukaryote, very little
is known about the S. japonicus cell-cycle regulative network.

Here we show that our methodology allows us to identify binding sites in S.
japonicus using S. pombe gene expression data. As an example of annotation
crossing from S. pombe to S. japonicus we focus on the Eng1 cluster, a set of
very strongly cell cycle-regulated genes, which in S. pombe contains nine genes,
involved in cell separation [6]. The genes are adg1 and adg2 (cell surface glyco-
proteins), adg3 (glucosidase), agn1 and eng1 (glycosyl hydrolases), cfh4 (chitin
synthase regulatory factor), mid2 (an anillin needed for cell division and septin
organization), ace2 (a cell cycle transcription factor), and SPCC306.11, a se-
quence orphan of unknown function. Motif searches showed that each gene of
the cluster has at least one binding site for the Ace2 transcription factor (consen-
sus CCAGCC). The Eng1 cluster has a recognizably similar functional cluster in
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Identifying Regulatory Sites Using Neighborhood Species 3

S. cerevisiae, the SIC1 cluster, which also contains the glycosyl hydrolase eng1
in S. pombe, and its ortholog DSE4 in S. cerevisiae.

In the next section we briefly describe the data and provide details on the
statistical procedures used. Then we describe the analysis and related findings.
Finally we discuss statistical issues related to the procedure we have used and
the potentialities, which are currently addressed.

2 Methodology

2.1 Motif Selection Procedure

We propose a method for finding DNA binding sites which is an extension of that
from [8]. While these authors have shown that variable selection is more effective
than the linear regression used by [4], we have extended their procedure to time
series analysis and to the use of gene expression from different species/strains.
We briefly describe our methodology, pointing to the differences with respect
to [8].We consider microarray experiments that explore the transcriptional re-
sponses of the fission yeast S. pombe [6] to cell cycle. This allows us to compare
two organisms with similar biological complexity. We focus on two stress con-
ditions in wild type cultures: oxidative stress caused by hydrogen peroxide and
heat shock caused by temperature increase. Our other data consists of the or-
ganisms’ genome sequences. S. Pombe DNA sequence data were obtained from
the NCBI’s FTP site (ftp://ftp.ncbi.nih.gov/genomes/); S. japonicus se-
quence data from (http://www.broad.mit.edu). The motif finding algorithms
are sensitive to noise, which increases with the size of upstream sequences ex-
amined. As reported by [9], the vast majority of the yeast regulatory sites from
the TRANSFAC database are located within 800 bp from the translation start
site. We therefore extracted sequences up to 800 bp upstream, shortening them,
if necessary, to avoid any overlap with adjacent ORF’s. For genes with negative
orientation, this was done taking the reverse complement of the sequences. Then
we used MDScan [5] to search for nucleotide patterns. The algorithm starts by
enumerating each segment of width w (seed) in the top t sequences. For each
seed, it looks for w-mers with at least n base pair matches in the t sequences.
These are used to form a motif matrix and the highest scoring seeds are retained.
The updating step is done iteratively by scanning all w-mers in the remaining
sequences and adding in or removing from the weight matrix segments that in-
crease the score. This is repeated until the alignment stabilizes. The score of each
motif is computed as in [4]. For each organism, the entire genome regions were
extracted and used as background models. We searched for nucleotide patterns
of length 5 to 15 bp and considered up to 30 distinct candidates for each width.

Our methodology is summarized in Figure 1 and proceed as follows: we first
select candidate motifs which are generated from the over-represented nucleotide
patterns, then we derive pattern scores for each motif following [4]. We continue
by fitting a linear regression model relating gene expression levels (Y ) to pattern
scores (X), and using a Bayesian variable selection method we select motifs that
best explain and predict the changes in expression level.
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Fig. 1. Graphical representation of methodology

The variable selection method proceeds as follows. A latent vector, γγγ , with
binary entries is introduced to identify variables included in the model; γj takes
on value 1 if the jth variable (motif) is included and 0 otherwise. The regression
model is then given by:

Y = Xγβγ + ε, ε ∼ N(0, σ2), (1)

where the columns of X and Y are mean-centered and (γ) indexes variables
included in the model [1].

We specify Bernoulli priors for the elements of γγγ:

p(γγγ) =
p∏

j=1

θγj (1 − θ)1−γj , (2)

where θ = pprior/p and pprior is the number of covariates expected a priori to be
included in the model. For the other model parameters, we take

βγ ∼ N(0, c{X ′
γXγ}−1)

σ2 ∼ Inv−χ2(a, b), (3)

where a, b and c need to be assessed through a sensitivity analysis (see [8]). The
scaling value b was taken to be comparable in size to the expected error variance
of the standardized data.

Note that, with respect to [8], the choice of the prior is not completely random:
it draws suggestions from the motifs already discovered in analysis of the genome
data of close species.
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Identifying Regulatory Sites Using Neighborhood Species 5

2.2 Stochastic Search

Having set the prior distributions, a Bayesian analysis proceeds by updating the
prior beliefs with information that comes from the data. Our interest is in the
posterior distribution of the vector γγγ given the data, f(γγγ|X, Y ). Vector values
with high probability identify the most promising sets of candidate motifs. Given
the large number of possible vector values (2p possibilities with p covariates), we
use a stochastic search Markov chain Monte Carlo (MCMC) technique to search
for sets with high posterior probabilities.

Our method visits a sequence of models that differ successively in one or two
variables. At each iteration, a candidate model, γγγnew, is generated by randomly
choosing one of these two transition moves:

(i) Add or delete one variable from γγγold.
(ii) Swap the inclusion status of two variables in γγγold.

The proposed γγγnew is accepted with a probability that depends on the ratio
of the relative posterior probabilities of the new versus the previously visited
models:

min
{

f(γγγnew|X, Y )
f(γγγold|X, Y )

, 1
}

, (4)

which leads to the retention of the more probable set of patterns [8,1].
Our stochastic search results in a list of visited sets and corresponding rela-

tive posterior probabilities. The marginal posterior probability of inclusion for a
single motif j, P (γj = 1|X, Y ), can be computed from the posterior probabilities
of the visited models:

p(γj = 1|X, Y ) =
∫

p
(
γj = 1, γγγ(−j)|X, Y

)
dγγγ(−j) (5)

∝
∫

p
(
Y |X, γj = 1, γγγ(−j)

)
· p(γγγ)dγγγ(−j)

≈
M∑

t=1

p
(
Y |X, γj = 1, γγγ

(t)
(−j)

)
· p

(
γj = 1, γγγ

(t)
(−j)

)
,

where γγγ
(t)
(−j) is the vector γγγ at the tth iteration without the jth motif.

For each organism and stress condition, we regressed the expression levels on
the pattern scores using separate models. In all cases, the analyses were started
with a set of around 200 patterns. We chose pprior = 10 for the prior of γγγ. This
means that we expect models with relatively few motifs to perform well.

For every regression model, we ran 8 parallel MCMC chains. The searches were
started with a randomly selected γj ’s set to one. We pooled together the sets of
patterns visited by the 8 MCMC chains and computed the normalized posterior
probabilities of each distinct visited set. We also computed the marginal posterior
probabilities, P (γj = 1|X, Y ), for the inclusion of single nucleotide patterns.

For comparison, we repeated the analysis with MotifRegressor [4], which uses
stepwise regression to select motifs.
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6 C. Angelini et al.

3 Results

We first assessed the distance between S. pombe and S. japonicus by means of a
phylogenetic tree. A maximum likelihood tree, based on the eng1 protein show-
ing the position of S. pombe with respect other fungi (S. cerevisiae, S. pombe,
Eremothecium gossypii, Kluyveromyces lactis, Debaryomyces hansenii, Candida
albicans, Yarrowia lipolytica, Aspergillus oryzae, Phaeosphaeria nodorum, Neu-
rospora crassa) is shown in Figure 2. We used sequences from the nearest neigh-
borhood fungi. Since Eng1 protein family are globular cytoplasmic proteins we
used the JTT [10] model of evolution. The phylogeny shows the short distance
between S. pombe and S. japonicus (branch length is in 100 amino acid replace-
ment units) with respect to the other fungi genomes. The future availability of
other genome sequences (Neurospora and Aspergillus sequencing projects are un-
der way) will provide ground for testing the integration of molecular information
at larger phylogenetic distances.

Then we have run the variable selection software, which we have implemented
in Matlab; we found that, even using a poorly refined genomic background
(Markov chain of order 3), we were able to identify the exact pattern of ace2 in
S. pombe and a nearly exact pattern of ace2 in S. japonicus.

0.1

S pombe

S japonicus

Phaeosphaeria

Aspergillus
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Debaryomyces

Candida

Eremothecium

S cerevisiae

Kluyveromyces

Fig. 2. Maximum Likelihood tree inferred using Eng1 protein sequences
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The comparison between Figure 3, which represent the marginal posterior
probabilities computed from S. pombe data and Figure 4 which represent S.
japonicus suggest a regulatory similarity between S. japonicus and S. pombe:
very likely eng1 motif is also regulating a set of 9 genes in S. japonicus.

In both figures the x-axes correspond to the pattern indices and the y-axes
correspond to p(γγγ|X, Y ). The spikes indicate patterns included in the model
with high probability.

This result provides example of the possibility of using S. pombe Eng1 pro-
moters to annotate or simply offer suggestions useful in the annotation of S.
japonicus. Moreover algorithms such as Gibbs sampling allows one to identify
similar patterns in other genes and, therefore, determine other genes putatively
regulated by the same transcription factor.

3.1 Discussion

The reasoning of our work is double: 1) we propose a method for annotating
the transcription sites in one genome using gene expression data from another
species; 2) our statistical framework allows us to estimate the degree of consis-
tency between the motifs identified in the analysis of one set of experiments and
those identified in another set. Using the mathematical notation introduced be-
fore, given Yb and Xγa we determine Ŷb(γa) and the error in the fitting; 2) given
Yb e X we repeat the variable selection and compute γb and the fitting error.

Different groups may work on the same species, which may evolve rapidly
due to different environmental conditions (for example laboratory cultures) or
interactions and selection due to pathogens and therefore show consistent differ-
ences at population genetics level, for instance several classes of mutations and
recombination events. Clearly when experiments consider a reference sequence
from a model genome, changes may have occurred, affecting the generality of
the findings. At the same time, slightly different experimental conditions, mi-
croclimate or a different history in media cultures may result in some changes
in the expression patterns, at least for the genes of interest. Comparisons of
gene expression profiles in yeast’s mutants may prove the effective involvement
of changes in a DNA binding site in giving a phenotype. Particular focus may
be put to unravel the function of orphan genes through the presence of motifs
in their upstream region.

It is nowadays not uncommon to replicate gene expression experiments. Find-
ing the best way of using these replicates is however not obvious - one option
is to partition the data into training and test sets in order to asses the general-
ization strength of the fitted model. Clearly if we have a consistent number of
replicates from the same strain we can compute the mean and variance which
gives an estimate of the stringency of the genetic regulatory control involved in
the transcription factor site recognition.

There is a growing trend of using microarrays in re-sequencing, although en-
tire genomes are very rarely re-sequenced lately. This may allow in the future
to use our procedure to identify transcription factors from a single microarray
experiment [11]. It is known that genes coding for DNA-binding proteins are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Identifying Regulatory Sites Using Neighborhood Species 9

usually less conserved than genes coding for structural proteins. Rajewsky and
collaborators [7] have demonstrated an inverse correlation between the rate of
evolution of transcription factors and the number of genes that they regulate.
The analysis of variances and covariances of sequences and microarray may al-
low insights into the evolution and selection pressure on transcription binding
sites and gene expression. For example, an interesting possibility is to start with
sequences belonging to a family of motifs and let them evolve accordingly to a
model of evolution [10]; then the regression coefficients may provide an estimate
of the negative selection pressure acting on the motif sequences.

In summary the use of gene expression and sequences from close species to-
gether with a better information extraction from replicates [3], may lead to a sig-
nificant improvement of the quality and speed of genome annotation. Moreover
it allows the recognition of different cell conditions, strains, species, similar con-
ditions in different species, based on sequence-gene expression variances and co-
variances. A change in gene expression due to genome sequence modification (for
instance the insertion of a new copy of motif upstream one gene) can be estimated
in terms of the regression coefficients. Work in progress consists in the elucidation
of the entire cell cycle regulatory control and stress induced genes in S. japonicus
using all the wealth of information from annotated or semi-annotated genomes
and more refined background models (5th order Markov chain or higher).

4 Figures

Figure 1. Graphical representation of methodology - We fit a linear regression
model that relates gene expression data to pattern scores. A Bayesian variable
selection method, which introduces a latent binary vector γγγ, is used to identify
variables included in the model. A stochastic search MCMC technique is used
to update γγγ. Motifs with high posterior probability are selected and indicate
promising sets for further investigation.
Figure 2. Maximum Likelihood tree inferred using Eng1 protein sequences
from S. cerevisiae, S. pombe, Eremothecium gossypii, Kluyveromyces lactis, De-
baryomyces hansenii, Candida albicans, Yarrowia lipolytica, Aspergillus oryzae,
Phaeosphaeria nodorum, Neurospora crassa. Branch length is in 100 amino acid
replacement units.
Figure 3. Marginal posterior probabilities of all nucleotide patterns found in
S. pombe. The x-axes correspond to the pattern indices and the y-axes corre-
spond to p(γγγ|X, Y ). The spikes indicate patterns included in the model with
high probability.
Figure 4. Marginal posterior probabilities of all nucleotide patterns found in S.
japonicus. See details of Figure 3.
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Abstract. Computational methods allowing reliable pharmacokinetics predic-
tions for newly synthesized compounds are critically relevant for drug discov-
ery and development. Here we present an empirical study focusing on various
versions of Genetic Programming and other well known Machine Learning tech-
niques to predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding
(%PPB) levels. Since these two parameters respectively characterize the harmful
effects and the distribution into human body of a drug, their accurate prediction
is essential for the selection of effective molecules. The obtained results confirm
that Genetic Programming is a promising technique for predicting pharmacoki-
netics parameters, both from the point of view of the accurateness and of the
generalization ability.

1 Introduction

Because of recent advances in high throughput screening (HTS), pharmaceutical re-
search is currently changing. In the traditional drug discovery process, when a target
protein is identified and validated, the search of lead compounds begins with the de-
sign of a structural molecular fragment with therapeutic potency. Libraries of millions
of chemical compounds similar to the identified effective fragment are then tested and
ranked according to their specific biological activity. After these tests some candidate
drugs are selected from the library for more specific development (see figure 1.a). In
order to have a real pharmacological value, compounds have not only to show a good
target binding, but also have to reach the target in vivo. In other words, it is neces-
sary that compounds follow a proper route into the human body without causing toxic
behaviors. It is interesting to remark that, both in 1991 [22] and in 2000 [7], a consid-
erable fraction of attritions in pharmacological development were generated at the level
of pharmacokinetics and toxicology, producing an unacceptable burden on the budget
of drug companies (see figure 1.b). The necessity of deeply characterizing the behav-
iors of the pharmacological molecules in terms of adsorption, distribution, metabolism,
excretion and toxicity processes (collectively referred to as ADMET [4]) makes the

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 11–23, 2007.
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Fig. 1. a) The process of drug discovery from target protein identification to candidate drugs: the
identification and validation of the target are followed by lead discovery and optimization. b) Rea-
sons for failure in drug development in 1991 and 2000: clinical safety (black), efficacy (red),
formulation (green), PK/bioavailability (blue), commercial (yellow), toxicology (gray), cost of
goods (purple) and others (white).

development of computational tools applicable for pharmacokinetic profiling, enabling
both the generation of reliable predictive models and the management of large and het-
erogeneous databases of outmost relevance [4] [25]. Reliable prediction tools allow the
risk reduction of late-stage research failures, while reducing the number of cavies used
in pharmacological research. In this paper, we empirically show that Genetic Program-
ming (GP) [12] is a promising and valuable tool for predicting the values of Median
Oral Lethal Dose (LD50) and Plasma Protein Binding (%PPB) levels. LD50 is one
of the parameters measuring the toxicity of a given compound. More precisely, LD50
refers to the amount of compound required to kill 50% of the cavies. It is usually ex-
pressed as the number of milligrams of drug related to one kilogram of mass of cavies
(mg/kg). Depending on the specific organism (rat, mice, dog, monkey and rabbit usu-
ally) and on the precise way of supplying (intravenous, subcutaneous, intraperitoneal,
oral generally) chosen, it is possible to define a wide spectrum of LD50 experimental
protocols. We consider the LD50 measured using rats as model organisms and sup-
plying the compound orally. %PPB corresponds instead to the percentage of the initial
drug dose which binds plasma proteins [13]. This measure is fundamental, both because
blood circulation is the major vehicle of drug distribution into human body and because
only free (unbound) drugs permeate the cellular membranes and reach the targets.

This paper is structured as follows: section 2 describes the mostly employed methods
in literature for LD50 and %PPB levels predictions. In section 3, we describe the ML
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techniques used and our experimental settings including dataset collection and prepa-
ration methods, and we pinpoint all the parameters needed for a complete reproduction
of our experiments. Section 4 shows the experimental results obtained by using four
different implementations of GP and their comparison to the results obtained by em-
ploying five non evolutionary ML methods. Finally, in section 5 we discuss the results
and we suggest hints for future research.

2 State of the Art and Related Work

Usually, pharmacokinetics prediction tools can be based on two paradigms: molecular
modeling (using approaches of intensive chemical structure calculations) and data mod-
eling. Methods based on data modeling are widely reported in literature and all are based
on Quantitative Structure Activity Relationship (also called Q.S.A.R.) models [5]. Such
models try to infer a quantitative relationship between the structure of a molecule and its
biological activity by means of statistical regression methods. To accomplish this task,
it is necessary to collect a training set of drugs for which the biological parameter to be
predicted is known experimentally. A spectrum of features, called molecular descrip-
tors [17], is calculated from the structural representation of each compound. Descrip-
tors could be computed by representing molecules as graphs with labeled nodes (atoms)
and labeled edges (bonds between atoms). In this sense two main categories of fea-
tures are used in QSAR procedures: 2D-chemical descriptors, based on a bi-dimensional
representation of compounds and 3D-chemical descriptors, whose computation is time-
consuming since they are calculated from a tri-dimensional molecular structure. After
the computation of the molecular descriptors, it comes natural to look for a mathematical
relationship between them and the biological parameter, applying statistical or Machine
Learning (ML) procedures. Drug toxicity prediction is a very complex task, because of
the complexity of possible interactions between the organism and the pharmacological
molecule. i.e. similar compounds may undergo different toxic behaviors). A benchmark
of mathematical methods, including recursive partitioning (RP) and Partial Least Square
regression (PLS) among others, has been tested in [9] for pharmacokinetic predictions.
Multivariate Linear Regression and Artificial Neural Networks have been applied for
building a model of LD50 in fathead minnow (Pimephales promelas) for 397 organic
chemicals [23]. For %PPB, a sigmoidal relationship between the percentage of drug
bound and the logD at pH 7.4 has been proposed [6], even though a considerable scatter of
data around the predicted trend has been detected. A technique called Genetic Function
approximation (GFA) considering 107 molecular descriptors has been proposed in [2].
As suggested in [10], artificial Neural Networks are ubiquitously used for pharmacoki-
netics parameters estimation. Neural Networks are widely used also in the existing com-
mercial packages, that are usually developed by software vendors traditionally involved
in the field of molecular modeling. GP has not been extensively used in pharmacoki-
netics until now. Four noteworthy exceptions are given by refernce [27] (where GP is
used to classify molecules in terms of their Bioavailability), reference [1] (where GP is
used to quantitatively predict the fraction of drug absorbed), reference [26] (where GP
is used as feature selection technique for QSAR applications) and reference [15] (where
multi-objective optimization frameworks are used for QSAR applications).
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3 Experimental Protocol Settings

In this section we first describe the procedures used for datasets collection and prepa-
ration. We have obtained a set of molecular structures and the corresponding LD50
and %PPB values parsing a public database of FDA approved drugs and drug-like com-
pounds [19]. Chemical structures are all expressed as SMILES code (Simplified Molec-
ular Input Line Entry Specification), i.e. strings codying the 2D molecular structure of a
compound in an extremely concise form. The resulting libraries of molecules contained
234 (respectively 662) molecules with measured LD50 (respectively %PPB) values.
SMILES strings have been transformed into vectors of 626 molecular descriptors using
the on-line DRAGON software [24]. Thus, data have been gathered in matrices com-
posed by 234 (respectively 662) rows and 627 columns. Each row represents a drug;
each column a molecular descriptor, except the last one, that contains the known val-
ues of LD50 (respectively %PPB). These two datasets, comprehensive of SMILES data
structures and molecular descriptors can be downloaded from our laboratory webpage:
<omitted to keep anonimity>. Training and test sets have been obtained by randomly
splitting the two datasets. For each dataset, 70% of the molecules have been randomly
selected with uniform probability and inserted into the training set, while the remaining
30% form the test set.

3.1 Genetic Programming Configurations

The four versions of GP methods proposed in this paper are briefly described below.

“Canonic” (or standard) GP. The first GP setting used also called canonic, or stan-
dard, GP and indicated as stdGP, is a deliberately simple version of standard tree-based
GP [12]. In particular, we used the parameter setting, sets of functions and terminal
symbols as similar as possible to the ones originally adopted in [12] for symbolic regres-
sion problems. Each molecular feature has been represented as a floating point number.
Potential solutions (GP individuals) have been built by means of the set of functions
F = {+,∗,−,%} (where % is the protected division, i.e. it returns 1 if the denomina-
tor is zero), and the set of terminals T composed by n floating point variables (where
n is the number of columns in the training sets, i.e. the number of molecular features
of the compounds). The fitness of each individual has been defined as the root mean
squared error (RMSE) in prediction computed on the training set. Afterwards, for each
individual k, we evaluated the RMSE and the correlation coefficient (CC) measured on
the test set, and we used them for comparing GP results with the ones of the other em-
ployed methods. GP parameters used in our experiments are: population size of 500
individuals; ramped half-and-half initialization; tournament selection of size 10; max-
imum tree depth equal to 10; subtree crossover [12] rate equal to 0.95; subtree, swap
and shrink mutation [12] rates equal to 0.1; maximum number of generations equal to
100. Generational GP has been used with elitism (i.e. copy of the best individual in the
next population at each generation).

LS2-GP. The second version of GP differs the previous one for the fitness function,
which in this case is obtained executing two steps: (1) application of linear scaling to
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RMSE (a detailed introduction of this method can be found in [11]). (2) computation of
a weighted average between the RMSE with linear scaling and the CC between expected
outputs and the results returned by the GP candidate solution. Weights equal to 0.4 and
0.6 have been respectively assigned to RMSE and CC, after being normalized into the
range [0,1], thus giving slightly higher importance to CC. This values have been chosen
empirically through a simple experimentation phase (whose results are not shown here
for lack of space) from which resulted that they are the values for which the GP system
has the best generalization ability. The idea behind this weighted sum is that optimizing
only the RMSE on the training set may leads to overfitting and thus to a poor general-
ization power of GP solutions (i.e. bad results on the test set). If we optimize more than
one criterium, GP returns more likely individual which is good for all the criteria even
though not optimal for all of them. This GP version will be called ”Linear Scaling with
2 criteria” GP or LS2-GP from now on.

LS2-C-GP. The third GP version presented in this paper is similar to LS2-GP with
the only difference that a set of ephemeral random constants (ERCs) is added to the
set of terminal symbols to code GP expressions. These ERCs are generated uniformly
at random from the range [m,M], where m and M are the minimum and the maximum
target values on the training set respectively. In the experiments presented in this paper,
a number of ERCs equal to the number of floating points variables has been used. This
choice has been empirically confirmed to be suitable by a set of GP runs in which
different numbers of ERCs extracted from different ranges have been used. The results
of these experiments are not shown here for lack of space. This version of GP will be
called ”LS2 with Constants” GP and indicated as LS2-C-GP.

DF-GP. In the fourth version of GP the fitness function changes dynamically changes
during the evolution. In particular, the evolution starts with the CC used as the only
optimization criterium. When at least the 10% of the individuals in the population
reaches a value of the CC which is largest or equal to 0.6, the fitness function changes,
and it becomes equal to the RMSE for all those individuals which have a CC larger
or equal to 0.6; to all the other individuals we artificially assign a very bad fitness
value. In this way, selection operates as a strong pruning algorithm, giving a chance
to survive for mating only to those individuals whose correlation is largest or equal to
0.6. The idea behind this method is that the search space is too large for GP to per-
form efficiently; furthermore, we hypothesize that individuals with a good, although
not optimal, CC between outputs and goals have a largest generalization ability and
thus should take part in the evolutionary process. Some experiments (whose results
are not shown here for lack of space) have empirically confirmed that the threshold
value 0.6 for the CC is large enough to avoid underfitting and small enough to re-
duce overfitting. Of course, this value has been tested and has revealed suitable only
for the datasets used in this paper and can by no means be interpreted as a general
threshold. Nevertheless, the experiments that we have executed to obtain this value
are very simple and if we wish to evolve new expressions on new data we could eas-
ily replicate them. This GP version has been called Dynamic Fitness GP and will be
indicated as DF-GP from now on.
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3.2 Non Evolutionary Methods

Various non evolutionary regression models were used for comparison with GP results.
They are described below in a synthetic way, since they are well known and well es-
tablished ML techniques. For more details on these methods and their use, the reader
is referred to the respective references quoted below. Furthermore, we adopted two fea-
ture selection heuristics: the Correlation based Feature Selection (CorrFS) [14] and the
Principal Component based Feature Selection (PCFS) [8] implemented in weka [28] ,
which are not described here to save space.

Linear and Least Square Regression. We used the Akaike criterion for model se-
lection (AIC) [3], that has the objective of estimating the Kullback-Leibler information
between two densities, corresponding to the fitted model and the true model. The M5
criterion is used for further attribute selection [3]. The least square regression model is
founded on the algorithm of Robust regression and outlier detection described in [16],
searching for the more plausible linear relationship between outputs and targets.

Artificial Neural Networks. The multilayer Perceptron [20] implementation included
in the Weka software distribution [28] was adopted. It uses the Backpropagation algo-
rithm [20] with a learning rate equal to 0,3. All the neurons have a sigmoidal activation
function. All the other parameters that we have used have been set to the defaults values
proposed by the Weka implementation. A momentum of 0.1 progressively decreasing
until 0.0001 has been used to escape local optima.

Support Vector Machines Regression. The Smola and Scholkopf sequential minimal
optimization algorithm [21] was adopted for training a Support Vector regression using
polynomial kernels. The Weka implementation [28] of this ML method has been used.
More precisely we have built two models using polynomial kernels of first and second
degree respectively.

4 Experimental Results

Rat Median Oral Lethal Dose. Here we present the experimental results that we have
obtained for the prediction of LD50. In table 1 the RMSE and CC are reported for all
the non evolutionary ML techniques. No feature selection procedure has been applied

Table 1. Experimental comparison between different non evolutionary ML techniques for Rat
Median Oral Lethal Dose predictions without feature selection

Method RMSE on test set Correlation coefficient
Linear Regression 9876.5079 0.0557

Least Square Regression 66450.2168 0.1976
Multi layer Perceptron 2412.0279 -0.0133

SVM Regression - first degree polynomial kernel 18533.3505 -0.1723
SVM Regression - second degree polynomial kernel 4815.3241 0.1108
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Table 2. Experimental comparison between different non evolutionary ML techniques for Rat
Median Oral Lethal Dose predictions using PCFS

Method RMSE on test set Correlation coefficient
Linear Regression 2703.6638 -0.1424

Least Square Regression 3149.4284 -0.1514
Multi layer Perceptron 3836.1868 0.2003

SVM Regression - first degree polynomial kernel 2523.5642 0.0494
SVM Regression - second degree polynomial kernel 3229.7823 -0.1048

here. The best RMSE result is returned by the multilayer Perceptron, while the best CC
has been found by the Least Square Regression. The results returned by the same tech-
niques using the PCFS are reported in table 2. These results suggest that the use of this
feature selection technique helps to generally improve the performances of all meth-
ods. In this case the best RMSE result is returned by SVM regression with first degree
polynomial kernel, while the best CC is found by the multilayer Perceptron. Results
obtained by using CorrFS istead of PCFS are reported in table 3. In this case we can
observe a further improvement, and the best RMSE is returned by Linear Regression,

Table 3. Experimental comparison between different non evolutionary ML techniques for Rat
Median Oral Lethal Dose predictions using CorrFS

Method RMSE on test set Correlation coefficient
Linear Regression 2170.4631 0.2799

Least Square Regression 2753.6281 -0.0358
Multi layer Perceptron 3204.0369 0.1041

SVM Regression - first degree polynomial kernel 2241.0289 0.39
SVM Regression - second degree polynomial kernel 2504.2721 0.115

Table 4. Experimental results of the different GP versions in predicting Rat Oral Median Lethal
Dose without feature selection. These results concern the individuals with the best RMSE value
in all the populations over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 1776.77 0.0625492 1882.86 0.31329
LS2-GP 1753.58 0.280622 1753.58 0.280622
LS2-C-GP 1779.13 0.224534 1800.07 0.248892
DF-GP 1815.07 0.183483 1879.76 0.201722

while the best CC is found by the SVM regression with first degree polynomial kernel.
In table 4 we report RMSE and CC for all the GP versions introduced above without any
feature selection method. To have a complete picture of the GP capabilities, we show
the performances of both the individual with the best RMSE value and the individual
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with best CC contained in the population after 20 independent runs. Although further
investigation is needed to confirm these results, for example through the analysis of the
ML algorithms with respect to their learning parameters, the GP approaches seems to
be promising in that they outperform the other ML methods both for RMSE and CC.
The GP version that has returned the best RMSE is LS2-GP, while the best CC has been
found by stdGP. We also point out that DF-GP does not reach the CC value of 0.6 on the
test set, even though the selection algorithm prunes all the individuals with a smaller
CC than 0.6 on the training set. In table 5, we report the performance of the GP versions
with PCFS. In this case, the number of variables used as terminal symbols to build the

Table 5. Experimental results of the different GP versions in predicting Rat Oral Median Lethal
Dose with PCFS. These results concern the individuals with the best RMSE value in all the
populations over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 1883.53 0.00805945 2301.12 0.260822
LS2-GP 1754.87 0.288088 1802.69 0.293959
LS2-C-GP 1775.7 0.249466 1779.93 0.252211
DF-GP 1859.85 0.203944 4340.19 0.223444

trees (and consequently also the number of ERCs in LS2-C-GP, which is always equal
to the number of variables in our experiments) is equal to the number of features se-
lected by the PCFS. The application of this feature selection strategy does not seem to
remarkably enhance performances of any of the GP versions. The same holds for Cor-
rFS, results reported in table 6. We remark that when we have explicitly used no feature

Table 6. Experimental results of the different GP versions in predicting Rat Oral Median Lethal
Dose with CorrFS. These results concern the individuals with the best RMSE value in all the
populations over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 1789.57 0.200317 1845.63 0.305397
LS2-GP 1841.56 0.106883 2080.02 0.163737
LS2-C-GP 1882.26 0.112631 2644.63 0.240427
DF-GP 1917.21 0.139279 1917.21 0.139279

selection (results reported in 4), GP has, by itself, performed a feature selection, since
the best individuals returned by each of the GP versions contain only a very restricted
subset of all the possible variable symbols. Thus, we hypothesize that, at least for this
training set, GP “prefers” to selects features by its own, rather than considering a set of
features filtered by another algorithm.
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Plasma-Protein Binding Levels. Here we present the experimental results that we
have obtained for the prediction of %PPB. In table 7 the RMSE and CC for all the
non evolutionary ML techniques are reported, without applying any feature selection
procedure. Both the best RMSE and the CC results are returned by the SVM regres-
sion with first degree polynomial kernel. The results of the same techniques using

Table 7. Experimental comparison between different non evolutionary ML techniques for
Plasma-Protein Binding predictions without feature selection

Method RMSE on test set Correlation coefficient
Linear Regression 39.8402 0.3802

Least Square Regression 56.2947 0.0323
Multi layer Perceptron 32.6068 0.1398

SVM Regression - first degree polynomial kernel 31.4344 0.5056
SVM Regression - second degree polynomial kernel 53.0044 0.2616

Table 8. Experimental comparison between different non evolutionary ML techniques for
Plasma-Protein Binding predictions using PCFS

Method RMSE on test set Correlation coefficient
Linear Regression 27.2677 0.5324

Least Square Regression 36.4912 0.1844
Multi layer Perceptron 56.9232 0.251

SVM Regression - first degree polynomial kernel 29.1552 0.4993
SVM Regression - second degree polynomial kernel 30.8581 0.5116

PCFS are reported in table 8. The usage of this feature selection procedure improves
the performances of all the methods, with the exception of multilayer Perceptron that
has returned a considerably higher RMSE. This time, both the best RMSE and the CC
results are returned by Linear Regression. Results obtained using CorrFS are shown
in table 9. As in the case of LD50, this kind of feature selection improves the perfor-
mances of all the non evolutionary ML techniques better than PCFS. As for the LD50,
the best RMSE result is returned by Linear Regression, and the best CC is found by the
SVM regression with first degree polynomial kernel. In table 10, RMSE and CC for all

Table 9. Experimental comparison between different non evolutionary ML techniques for
Plasma-Protein Binding predictions using CorrFS

Method RMSE on test set Correlation coefficient
Linear Regression 26.7496 0.5512

Least Square Regression 33.7744 0.4711
Multi layer Perceptron 31.7581 0.4379

SVM Regression - first degree polynomial kernel 27.2962 0.5586
SVM Regression - second degree polynomial kernel 28.3638 0.5188
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Table 10. Experimental results of the different GP versions in predicting Plasma Protein Binding
without feature selection. These results concern the individuals with the best RMSE value in all
the populations over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 34.6617 0.142542 36.9151 0.228315
LS2-GP 31.8281 0.319194 31.8281 0.319194
LS2-C-GP 32.4555 0.221073 32.5728 0.252989
DF-GP 32.1279 0.288191 32.245 0.294923

Table 11. Experimental results of the different GP versions in predicting Plasma Protein Binding
with PCFS. These results concern the individuals with the best RMSE value in all the populations
over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 34.9778 0.197143 37.816 0.26463
LS2-GP 31.0209 0.335335 31.2919 0.35923
LS2-C-GP 31.2285 0.329228 31.5918 0.334473
DF-GP 31.0119 0.361486 31.0119 0.361486

the GP versions introduced above are reported. No feature selection has been applied
here. Once again, for each GP version, the performances of both the individual with
the best RMSE value and the individual with best CC contained in the population at the
end of 20 independent runs are reported. Results obtained in the prediction of %PPB
show that the GP approach outperforms non evolutionary methods only when feature
selection is not applied. The GP version that turned out to be the best solution, both
in terms of RMSE and CC, is LS2-GP. In table 11, we report the performance of the
four GP proposed approaches combined with PCFS. Also in this case the application of
feature selection does not remarkably enhance their performances. The same holds for
CorrFS, see table 12.

Table 12. Experimental results of the different GP versions in predicting Plasma Protein Binding
with CorrFS. These results concern the individuals with the best RMSE value in all the popula-
tions over 20 independent runs.

Best RMSE individual Best CC individual
GP Version RMSE CC RMSE CC
stdGP 33.938 0.231034 36.3262 0.370302
LS2-GP 30.8059 0.394357 30.8059 0.394357
LS2-C-GP 31.2334 0.352454 31.2712 0.35958
DF-GP 31.0393 0.370221 31.0556 0.383304
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5 Discussion and Future Work

An empirical study based on various versions of Genetic Programming (GP) and other
well known ML techniques to predict Median Oral Lethal Dose (LD50) and Plasma
Protein Binding (%PPB) levels has been presented in this paper. The availability of
good prediction tools for pharmacokinetics parameters is critical for reducing the costs
of the ADMET experimentation phase. This meets the recent encouragement of UE
community contained in the REACH [18] proposal, whose aim is to improve the pro-
tection of human health and environment through the better and earlier identification
of the properties of chemical substances and, among these, toxicity. In our work the
technique that has returned the best results in the estimation of (LD50) was GP, while
for %PPB GP has been outperformed by Linear Regression and SVM with first degree
polynomial kernel. Nevertheless, also considering the good results obtained in literature
by GP in different (but similar) applications [1,27], GP can undoubtely be considered
one of the most promising techniques for this kind of tasks. We have also shown that
feature selection procedures, which generally significantly improve the performance of
non evolutionary ML techniques, are not relevant for improving GP prediction capa-
bilities. The reason of this is that GP intrinsically acts as a wrapper, by automatically
selecting and evaluating a specific subset of features to be kept inside the population. In
some senses, we could say that feature selection is implicit in GP, while for the other ML
techniques it has to explicitly be executed in a pre-processing phase. Furthermore, in
our experiments we have remarked that the individual characterized by the best RMSE
is often different from the one characterized by the best CC both on the training and
test sets. For this reason, we confirm an observation that has already recently been done
in [1]: using more (possibly uncorrelated) criteria for evaluating regression models is
often beneficial. In fact, in our experiments the best results on the test set have been
returned by the GP versions that use both the RMSE and the CC as optimization criteria
on the training set. Nevertheless, in this paper we evaluate individuals by simply per-
forming a weighted average between RMSE and CC. Future work will focus on testing
more sophisticated multi-objective learning algorithms, possibly based on the concept
of Pareto front and using more than two criteria. Finally, in order to deeply characterize
the ability of GP in the ADMET in silico arena, we are planning to test our methodolo-
gies on other datasets, for example in the prediction of Blood Brain Barrier Permeability
or Cytochrome P450 interactions.
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Abstract. Analysis of medical datasets has some specific requirements
not always fulfilled by standard Machine Learning methods. In particu-
lar, heterogeneous and missing data must be tolerated, the results should
be easily interpretable. Moreover, with genetic data, often the combina-
tion of two or more attributes leads to non-linear effects not detectable for
each attribute on its own. We present a new ML algorithm, HCS, taking
inspiration from learning classifier systems, decision trees and statistical
hypothesis testing. We show the results of applying this algorithm to a
well-known benchmark dataset, and to HNSCC, a dataset studying the
connection between smoke and genetic patterns to the development of
oral cancer.

1 Introduction

Medical research is shifting its focus from populations to individuals. It was
already evident that people react differently to the same stimuli (diseases, ther-
apies). The discovery of DNA and the advent of genetic profiling suggested it was
possible to track down these differences to their root causes. The genetic profile
of a person should have pinpointed her exact reaction to diseases and medicines;
unfortunately, this objective is still very far in the future. We can describe two
main aspects of genetic understanding which make the goal difficult to reach.
The first one is genome size. As everyday experience clearly shows, every person
is unique. From the genetic point of view, this can be explained through the
huge number of different genes in the human genome: it is very unlikely that
two people have exactly the same allelic variants of each gene. In principle, this
makes generalization impossible: we will never find “the same situation”. This
problem can be solved however by understanding the effect each gene has, and
by considering only those genes involved in the disease being studied. If for a
particular disease we can reduce the number of involved genes to a manageable
number, finding the same situation becomes possible. The second difficulty is
gene interaction. Traditional medical analyses typically assume independence of
the causing factors, and linearity of their combined effect. These assumptions
appear wrong in genetic research: rarely a single gene variant has a direct effect
on the outcome; genes work together, and often only their combined effect shows
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a significant impact on the outcome. This observation requires different analysis
techniques to be used, able to deal with non-linearity and factors dependence.

In this paper we will present a new algorithm, developed in order to analyze
data collected to study the effects of genetic variants on development of Head
and Neck Squamous Cell Carcinoma (HNSCC), a kind oral cancer very common
among smokers. Smoking is clearly a very important risk factor; observation
however shows that there exist more sensitive people, which develop cancer with
little to no smoking, and more resistant people, which do not develop cancer
although smoking a lot. This difference could be explained by different treat-
ment of carcinogens by the organism, regulated by different genetic variants.
The analysis was performed through a new machine learning (ML) algorithm,
loosely based upon learning classifier systems (LCS) research [1], called HCS
(Hypothesis testing with Classifier Systems). Its main aim is to identify sub-
sets of the whole dataset where the risk factor is significantly different from the
global risk. Differently from most ML algorithms, HCS loosens the requirement
of accuracy of its prediction, allowing to output a risk value instead of an exact
classification. The main focus is instead generality of the prediction: we will show
how this shift of goals was beneficial to the importance of results.

2 Problem Description

The data set we analyzed (originally presented in [2]) was designed to explore
the influence of genotype on the chance to develop head and neck squamous cell
carcinoma (HNSCC). It is already well-known that this kind of cancer is associ-
ated with smoking and alcohol-drinking habits, it is more common among males
and its incidence increases with age. The individual risk however could be mod-
ified by genetic factors; therefore genotype information, regarding eleven genes
involved with carcinogen-metabolizing (CCND1, NQO1, EPHX1, CYP2A6, CYP2D6,
CYP2E1, NAT1, NAT2, GSTP1) and DNA repair systems (OGG1, XPD) was provided
by molecular testing.

Nine of these genes have two allelic variants; let’s call them a1 and a2. Since the
DNA contains two copies of each gene, there exist three possible combinations:
a1a1, a2a2 (the homozygotes) and a1a2 (the heterozygote — order does not
matter). The homozygotes where represented with values 0 and 2, while the
heterozygote with 1. Due to dominance, for the examined genes the heterozygote
is equivalent to one of the homozygotes; however, for many of the considered
genes this dominant effect is not known. So class 1 is either equivalent to class 0,
or to class 2. The remaining two genes (NAT1 and NAT2) have 4 allelic variants,
which result in 9 combinations; they were sorted by their activity level, and put
on an integer scale from 0 to 8.

The full data consists of 355 records, with 124 positive elements (HNSCC
patients) and 231 negative (controls). Each record reports the person’s gender,
age, total smoke and alcohol consumption, gene values, and a boolean target
value which specifies whether he had cancer when the database was compiled
or not. The data was collected in different periods between 1997 and 2003; this
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has led to many missing values among the genotypic information of patients.
Actually only 122 elements have complete genotypic description; the remaining
233 have missing values ranging from 1 to 9, with the average being 3.58. As
an overall figure, of the 11 × 355 = 3905 genotype values, just 3070 are present:
21% of the genotype information is missing.

3 HCS: Fundamentals

HCS (Hypothesis testing with Classifier Systems) is the learning algorithm we
developed and employed to analyze the oral cancer dataset.

The underlying idea driving HCS design was to construct a system which
could find interesting information in a dataset. Formally defining interesting-
ness immediately appeared very difficult, if not impossible at all: it is too much
a subjective and domain-dependent quantity, to be practically defined in all sit-
uations. We then turned our research for the interesting into a research for the
unexpected. Starting from an established theory, experiments can be run to ob-
tain a set of data in order to test it. If the data is in accordance with the theory,
there is nothing new: nothing of interest. But when an experiment produces un-
expected results, then something new has been discovered: the original theory
needs to be revised — and this is certainly interesting.

Turning the idea into application: the environment where we will run ex-
periments to test the theory is the dataset. The dataset will have a number
of independent variables, also called attributes, and a dependent variable, also
called target. While the attributes can have any type (real, ordinal, binary, . . . ),
the target variable can only be binary — thus having only two values: positive
and negative. The theory to test will be the independence of the target from the
attributes.

The dataset will contain T samples, out of which Q with a positive target
variable. We will call ρ the proportion of positive values — that is, ρ = Q/T .
Any random extraction of samples from the dataset will contain some positive
and some negative samples too; their proportion will generally be not too far
from the global one.

Keeping the assumption of independence between attributes and target, se-
lecting samples with respect to their attribute values instead of completely at
random should again yield a proportion of positive and negative compatible with
the global ρ. When this does not happen, we found something unexpected. The
most diverse the proportion is from the global one, the more unexpected and
interesting is the subset of samples we found. Since the subset is defined by a
precise set of conditions on the attributes, the researcher can easily read these
conditions and realize what is the distinguishing pattern of the subset.

In order to establish how much a particular subset of the data is in accor-
dance with the global proportion, we employ statistical hypothesis testing. The
proper distribution of target values for a random extraction of data would be
the hypergeometric distribution. However, our final model will necessarily pro-
vide a fixed risk value, which with repeated sampling corresponds to a binomial
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distribution. We decided then to immediately perform this generalization step,
and to state the H0 hypothesis as that extractions from the dataset will follow a
binomial distribution, with ρ probability to obtain a positive sample. With this
assumption, the probability to extract a subset S(q, t) of t samples, q of which
are positive, is

P(S(q, t)) =
(

t
q

)
ρq(1 − ρ)(t−q) (1)

To calculate the p-value of the S(q, t), we have then to decide a rejection region,
containing the sample and every “more extreme” result. Out hypothesis testing
the ρ value in both directions (either more or less), so we need a two-tailed test.
The rejection region of a subset S(q, t) is defined as

R(q, t) = {S(r, t)|r ∈ {0, . . . , t} ∧ P(S(r, t)) ≤ P(S(q, t))} (2)

The rejection region is then simply the set of all results having probability lower
or equal to the examined sample. Figure 1 provides an example of the rejection
region. The bigger dot represents the example subset, with 16 positive samples
out of 60 total samples. The shaded area highlights all the “more extreme”
possibilities, which all together form the rejection region.
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Fig. 1. Rejection region R(16, 60) in a setting where ρ = 1/3. The x axis shows the
possible values for the number of positive samples; the y axis contains the corresponding
probability value.

It is then straightforward to calculate the p-value of a subset:

p-value(q, t) =
∑

S(r,t)∈R(q,t)

P(S(r, t)) (3)

The lower the p-value is, the more our subset is unexpected under the assump-
tion of independence of the target from the attributes. Our algorithm will then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



28 F. Baronti and A. Starita

search for regions with lowest possible p-value; this will actually happen through
maximization of the − log of the p-value. We will call this quantity I(q, t), to
mean interest. Figure 2 shows how this value changes in an example setting of 60
extractions and varying amount of positive samples. Clearly the least interesting
subset is the one with 20 positives: this is exactly the expected proportion when
ρ = 1/3. It would be instead very strange to find a subset with all, or almost all
positive: this corresponds to a very high interest value.
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Fig. 2. Negative log of the p-value in a setting where ρ = 1/3 and 60 samples. The x
axis shows the possible values for the number of positive samples.

Our work shares the basic goal of giving a definition to unexpected with the
recently proposed Bayesian theory of surprise [3]. This approach starts with a
prior distribution over all models, and compares it with the posterior distribution
after data has been analyzed through an information theory-related measure of
distance. In HCS instead we start with a single model, and check the probability
that the data could be obtained by that model.

4 HCS: The Algorithm

Now that a measure of interest of a region has been defined, it is necessary to
design an algorithm which can discover such regions. We will pose it as a max-
imization problem: among all the subsets S of the training data which can be
defined with a conjunction of conditions on the attributes, find the one with high-
est interest value. This problem was solved with an evolutionary algorithm [4],
taking inspiration partly from learning classifier systems, and partly from deci-
sion trees [5].
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Genotype Definition. Each individual has a many genes as attributes in the
training set. Each gene expresses a condition on its relative attribute; the gene
shape is depending on the data type of its attribute. For instance, boolean at-
tributes have a corresponding gene with three possible values: 0 (matching false
attribute values), 1 (matching true) and # (matching anything). With this re-
spect, genotypes in HCS have the same shape as the ones in other LCS systems,
like XCS [6]. However, individuals have no additional data other then their geno-
type; there is thus no action, performance, accuracy, numerosity, etc.

Phenotype Definition. The phenotype of an individual can be defined as the
subset of the training data matched by the individual. Matching occurs if a train-
ing sample satisfies all the conditions of the individual. In our implementation,
only the largest condition is satisfied by missing data. Taking the boolean exam-
ple again, only classifiers with a # condition will match data with the boolean
value missing. The rationale behind this choice is to avoid taking decisions based
on unknown values: if a classifier has a wildcard condition upon an attribute, it
will take the same decision regardless of the actual value of the attribute. Other
approaches are possible [7].

Fitness Evaluation. The evaluation of fitness is straightforward. The subset of
training samples identified by an individual is extracted; the size of the subset is
t, and q is the number of positive samples it contains. The fitness is then defined
as I(q, t), and will be maximized during the algorithm execution.

4.1 Internal Cycle

The internal cycle starts with an empty population, and evolves for a pre-defined
number of steps. The GA employs a steady-state population model: at each step,
a new offspring is generated and inserted into the population, removing another
one if the population reached its maximum size. Before evolution starts, the
proportion of positive samples over all the samples ρ is calculated: this is the
number that will be used in subsequent fitness evaluations.

Selection and Reproduction. The selection process employs a niching method
inspired to XCS in order to maintain diversity in the classifiers population, which
in turn helps to escape local optima.

At each step, a random sample is chosen with replacement from the training
set. The current population is scanned to find all the classifiers matching this
sample: these classifiers form the match set. If the match set is empty, covering
occurs: a new, random classifier is created, in such a way that it matches at least
the extracted sample.

The tournament selection mechanism is used to choose one classifier from
the match set. Since the match set has variable size, we use a variable-size
tournament, as in [8]. This means that, if n is the match set size, τ × n random
classifiers are extracted without replacement from the match set, and the one
with highest fitness among them is chosen for reproduction.
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Reproduction employs the three classical operators. Simple cloning just copies
the selected individual to the new population. Mutation puts in the new popu-
lation a copy of the individual, with small variations. With crossover, a second
individual is chosen from the match set with the same method; the two indi-
viduals are crossed, and their offspring is copied into the new population. Each
reproduction operator will be applied with a probability defined at runtime: χ
for crossover, μ for mutation, and cloning otherwise.

The created offspring is finally added to the population. If the population size
has reached its limit, a classifier is removed from it with an “inverse” tournament
selection: a subset of the whole population is chosen, and the classifier with lowest
fitness in the subset is selected for removal. The selection and reproduction cycle
is repeated until a pre-determined number of steps has been performed.

4.2 External Cycle

Once the internal cycle is terminated, the classifier with highest fitness in the
final population is retrieved and stored. The training set is then split into two
subsets: the samples matched by the classifier, and the samples not matched by
it. The internal cycle is then recursively repeated on both subsets, creating a tree
structure with classifiers at each node. Notice the ρ value is calculated again on
each of the two subset.

The external cycle repeats splitting until the classifier fitness is judged too
low. This decision is based upon significance testing. When a single hypothesis is
tested, the rejection decision is usually based on a single threshold value, called
α: the null hypothesis is rejected if the p-value is lower than α. The common-use
values of α are generally 0.05 and 0.01. In our setting, we are performing many
tests - actually, one for each classifier - increasing the probability to wrongly
reject the null hypothesis. To correct this effect, we applied the Bonferroni cor-
rection [9], dividing the standard α value by the total number of generated
classifiers. This approach is often considered too conservative [10]. From another
point of view however, the search algorithm is implicitly performing many more
tests than it actually does, so the steps value is underestimating the real number
of tests.

We assumed for simplicity that these two factors cancel out. The external
cycle was then allowed to run until the best reported classifier had fitness higher
than

− log(
α

steps
) (4)

5 Experiments and Results

We applied the HCS algorithm to the analysis of the Wisconsin Breast Cancer
dataset, from the UCI repository [11], and to the HNSCC dataset. Results are
compared with Naive Bayes (NB), C4.5, Neural Networks (NN) and XCS [2].
The parameters used for HCS are detailed in table 1.
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Table 1. Summary of HCS parameters

Pop. size 300
Steps 45000
μ 0.4
χ 0.5
τ 0.4
S0 0.75
Mr 0.1
P# 0.5

The behaviour of the algorithms was assessed with two indexes: accuracy and
Brier score. Accuracy is the most used measure of performance for classifiers,
whose prediction is a dichotomous value (either 0 or 1). Although it is not
well-suited to our model, which predicts risk values, it was used as a reference
measure. To calculate accuracy, the risk values predicted by the model were
rounded to the closest integer (0 or 1).

The Brier score [12] is a common index applied to evaluate the calibration of
a risk prediction model. It ranges from 0 to 1, with lower values corresponding
to better models. The formula is

B =
1
T

T∑

i=1

(Yi − r(Xi))2 (5)

In order to obtain an estimate of accuracy and Brier score, 10-fold stratified
cross-validation was applied. The scores were calculated on the reconstructed test
set. In order to smooth the variance coming from random fold partitioning, and
stochastic algorithms, we repeated each cross-validation experiment 10 times.
Tables 2 and 3 show the average of the results for the 10 runs, and their respective
standard deviations.

Table 2. WBC dataset: Accuracy and Brier score results on reconstructed test set,
10-fold cross validation. Average(standard deviation) of 10 runs.

NB C4.5 NN HCS

Accuracy .975 (.001) .950 (.004) .965 (.002) .945 (.005)
Brier .024 (.001) .046 (.004) .028 (.001) .043 (.004)

On the WBC benchmark dataset, all the tested algorithms have comparable
performance. The very good result of Naive Bayes suggests that the attributes
can almost independently contribute to the final prediction. HCS on this dataset
performs has a very close performance to the other algorithms, which confirms
the validity of our approach.

On the HNSCC dataset, traditional algorithms reach unsatisfactory perfor-
mance levels, with Naive Bayes and C4.5 both with 0.7 accuracy. Neural
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Table 3. HNSCC dataset: Accuracy and Brier score results on reconstructed test set,
10-fold cross validation. Average(standard deviation) of 10 runs.

NB C4.5 NN XCS HCS

Accuracy .694 (.007) .70 (.01) .78 (.02) .79 (.01) .838 (.008)
Brier .212 (.001) .198 (.008) .17 (.01) — .136 (.006)

Networks substantially improve this figure, thanks to its capability to model
non-linear interactions between attributes. HCS has the best performance on
this dataset, both from the Brier score and from the accuracy point of view.
This performance increase can clearly not be generalized to all datasets. How-
ever it shows how the ability to make multiple decisions at each node of the tree,
together with hypothesis testing in place of information gain, can find better
explanation for complex datasets, where attributes have a relevant effect on the
target only when they are combined.

HCS appears to perform better than XCS too. The weak point of XCS when
applied to this dataset is its aim to find perfect classifiers, which identify areas
containing either all ill or all healthy patients. In the HNSCC dataset (and we
believe in most medical datasets), this happens only by chance, in relatively
small subsets. The focus on not noisy classification is then hindering the more
important search for general classifiers.

After the test performance of HCS was assessed, we executed 10 runs of the
algorithm on the whole dataset. We obtained an average accuracy of 0.89(0.02),
and an average Brier score of 0.09(0.01). Paired with the cross-validation results,
these figures suggest that the algorithm extracts useful information from the
data. It is then meaningful to submit the classifiers to the clinicians, for biological
validation.

The algorithm is stochastic, so the runs produced slightly different trees, with
either one, two or three conditions. Since however all the results had a very
similar main condition, and nine out of ten had similar second condition (while
the remaining had none), we report a typical two-conditions tree as an example
of the algorithm result.

The first classifier extract 77 patients from the dataset, 73 of whom are ill. This
is a highly significant area, where the p-value of the null hypothesis is roughly
10−28. The particular genetic combination reported in this rule appears to be
favorable to developing cancer: removing age and packyears from the conditions
yielded a subpopulation of 103 patients, 74% of whom were ill — still a high risk
value, compared to the baseline of 35%.

The second classifiers, which applies on the people not taken into account by
the first one, finds a subset of 22 people, with 18 being ill. Considering that at
this point the baseline risk is (124 − 73)/(355 − 77) ≈ 0.18, this subset is still
very interesting (p-value ≈ 10−10). Again, a genotype causing a higher risk is
identified: on the full dataset, the second classifier without age and packyears
conditions extracts a subset of 70 patients, 74% of whom were ill.
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t0

0.95 t1

0.9 0.15

t0: 73/77 [28] gender=Male ∧ age∈ [49, 79] ∧ packyears≥ 4 ∧ ogg1∈ {0, 1} nat2gen≤
7 ∧ gstp1∈ {0, 1}

t1: 18/22 [11] age∈ [35, 82] ∧ packyears≥ 24 ∧ ephx1∈ {1, 2} ∧ gstp1∈ {0, 1}

Fig. 3. One result for the HNSCC dataset. Conditions are satisfied on the left branch,
and unsatisfied on the right branch. Numbers in brackets report rule fitness.

Since this was a case-control study, the dataset is not a representative sample
of the global population. It is then important to underline that the identified
risk values are not realistic, and do not represent the actual risk of a random
person satisfying their conditions. However, the result it still valid with respect to
the identified conditions: the genotypes reported by the classifiers will generally
have a worse prognosis than the average — although a different study design is
necessary to estimate the exact values.

6 Conclusions and Future Work

In this paper we presented a new machine learning algorithm, HCS, aimed at
discovering risk prediction rules over a dataset. The algorithm was designed
taking into account medical data analysis requirements. It can work seamlessly
with different data types, and it is robust to missing data. The algorithm provides
readily interpretable rules in an if-then format. We applied it to the analysis of
the HNSCC dataset, obtaining interesting results both from the accuracy point
of view, and from the interpretation point of view. Despite the stochastic nature
of genetic algorithms, the final result appeared quite stable; this is important to
increase the confidence of the researcher on the relevance of the result.

The algorithm is still in its first draft, as it was specifically designed for the
HNSCC dataset over which it was applied. It will be necessary to validate it on
the standard benchmark datasets (from the UCI repository [11], for instance).
Further work will include testing the effectiveness of algorithm design choices (eg.
binomial vs. hypergeometric hypothesis, tournament vs. fitness-proportionate se-
lection, niched vs. standard population). We will investigate the possibility to
apply a precise multiple hypothesis testing correction, and empirically evaluate
it. An interactive version is planned, where the clinician can choose at each exter-
nal cycle step which rule he thinks more interesting, and possibly manually tune
it to better comply with biological significance. Finally, the algorithm could also
be applied to different settings (eg. survival analysis), by using the appropriate
statistical tests.
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Abstract. In liquid chromatography-mass spectrometry (LC-MS) based
expression proteomics, samples from different groups are analyzed com-
paratively in order to detect differences that can possibly be caused by
the disease under study (potential biomarker detection). To this end, ad-
vanced computational techniques are needed. Peak alignment and detec-
tion are two key steps in the analysis process of LC-MS datasets. In this
paper we propose an algorithm for LC-MS peak detection and alignment.
The goal of the algorithm is to group together peaks generated by the same
peptide but detected in different samples. It employs clustering with a new
weighted similarity measure and automatic selection of the number of clus-
ters. Moreover, it supports parallelization by acting on blocks. Finally, it
allows incorporation of available domain knowledge for constraining and
refining the search for aligned peaks. Application of the algorithm to a
LC-MS dataset generated by a spike-in experiment substantiates the ef-
fectiveness of the proposed technique.

1 Introduction

Computational analysis of proteomic datasets is becoming of crucial relevance
for discovery of reliable and robust candidate biomarkers. In particular, quanti-
tation of changes in protein abundance and/or state of modification is the most
promising, yet most challenging aspect of proteomics. In recent years label-free
LC-MS methods that quantify absolute ion abundances of peptides and proteins
have emerged as promising approaches for peptide quantitation and profiling of
large numbers of clinical samples [1].

Briefly, peptides are subjected to (multi-dimensional) liquid chromatography
for separation. Each peptide fraction is then analyzed on an LC-MS system.
Each LC-MS run of a sample generates a pattern of very high input dimension
consisting of one intensity (relative abundance) measurement for each pair of
molecular mass-to-charge ratio (m/z) and retention time (RT) values. Ideally,
the same molecules detected in the same LC-MS instrument should have the
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same retention time, molecular weight, and signal intensity. However, in practice
this does not happen due to experimental variations. As a consequence, patterns
generated by LC-MS runs need to undergo a number of processing steps before
they can be comparatively analyzed. Such processing steps include normalization
[5,17], background subtraction [8], alignment [4,13,16,17], and peak detection
(e.g., [9]). Several tools and algorithms for processing and for difference analysis
of LC-MS datasets have been introduced (e.g., [2,3,7,9,11,15,20,17]).

In this paper we focus on peak detection and alignment. As well explained in
the overview paper by Listgarten et al [10], alignment algorithms involve either
(i) the maximization of an objective function over a parametric set of (generally
linear) transformations, or (ii) non-parametric alignment based on dynamic pro-
gramming, or (iii) combination of these methods like piecewise transformations.
They act either on the full pattern or on features (peaks) selected beforehand;
they may or may not use the signal intensity and they may or may not incor-
porate scaling. Most of alignment algorithms require a reference template, to
which all time series are aligned. Peak detection is usually performed in an ad-
hoc manner [10], involving either a comparison of intensities with neighbours
along the m/z axis [19] or detection of coinciding local maxima [18].

Whether one should perform peak detection before [14,17] or after [12] align-
ment has not been clearly established. In this paper we circumvent this issue
by performing both tasks at the same time by means of a novel clustering algo-
rithm. The motivations for a new algorithm rely also on the desire to overcome
drawbacks of alignment algorithms, such as the need for a reference template,
or the assumption of a given (local or global, usually linear) transformation
in RT dimension. The versatility of clustering for simultaneous alignment and
peak detection has been already recognized by Tibshirani et al. in [16]. They
align MALDI (a technique that generates two dimensional patterns of m/z and
intensity values from each sample) data along the m/z axis by applying one-
dimensional hierarchical clustering with complete linkage for constructing the
dendrogram and a specific cutoff for extracting clusters representing peaks.

The algorithm proposed here, called Peak Detection and Alignment (PDA),
acts on blocks of m/z values. Blocks are obtained by splitting the runs along the
m/z axis (e.g., in blocks of equal size). Each block is processed individually. The
input of PDA is a set of (blocks of) runs described by a list of triplets ( m/z,
RT, run id) consisting of ’m/z’ value, ’RT’ value and run identifier. The output
of PDA is a set of clusters of (m/z, RT) pairs representing peaks, together with
information about their signal intensity.

Novel features of PDA include:

1. a similarity measure for comparing features, where a feature is a triplet (m/z,
RT, id). Weights are associated to each of the three attributes to specify their
relevance;

2. a cluster merging strategy;
3. a cluster refinement procedure for handling peaks occurring near the boarder

of blocks.
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Application of PDA to a dataset generated by a spike-in experiment substanti-
ates its effectiveness. The results indicate that PDA provides a flexible, efficient
and robust approach for simultaneous peak detection and alignment of high-
throughput label-free LC-MS data.

2 Materials and Methods

2.1 nanoLC-FT Mass Spectrometry Proteomic Data

Efficiently identifying and quantifying disease- or treatment-related changes in
the abundance of proteins in easy accessible body fluids such as serum is an
important area of research for biomarker discovery. Currently, cancer diagnosis
and management are hampered by lack of discriminatory and easy obtainable
biomarkers. In order to improve disease management more sensitive and spe-
cific biomarkers need to be identified. In this light, the simultaneous detection
and identification of multiple biomarkers (molecular signatures) may be more
accurate than single marker detection. Therefore, great promise holds in com-
bining global profiling methods, such as proteomics, with powerful bioinformatics
tools that allow for marker identification. The additional dimension of separation
provided by coupling nanoliquid chromatography to high-performance Fourier
transform mass spectrometry (nanoLC-FTMS) allows for profiling large num-
bers of peptides and proteins in complex biological samples at great resolution,
sensitivity and dynamic range.

In LC-MS, the chromatographic column separates peptide mixtures based on
one or more physicochemical properties prior to MS. An ionization source con-
verts eluting peptides into ions which are separated by the mass analyzer on the
basis of m/z ratios. The detector then registers the relative abundance of ions at
discrete m/z values. Therefore, LC-MS yields values indicating that, at a par-
ticular time, an ion with a particular m/z value was detected with a particular
intensity. In the proteomics community, the unit of measure of the m/z axis is
one Dalton (Da), defined as 1/12 of the mass of one atom of carbon-12.

The dataset was generated as follows. Angiotensin 1 (1296.68 Da) was spiked
at 1 fmol/μl into a background of a 50 fmol/μl tryptic digest consisting of bovine
cytochrome c, hen egg lysozyme, bovine serum albumin, bovine apo-transferrin
and Escherichia coli β-galactosidase. 1 μl of the peptide mixture was loaded on
column (Pepmap C18 100 Å, 3 mm, 75 μm x 150 mm) and was separated at 250
nl/min in a 50 minute linear gradient of 10-40% buffer B (80% acetonitrile/0.05%
formic acid). Eluting peptides were detected using an LTQ-FT hybrid mass
spectrometer; mass spectra were acquired every second at resolution 100000.
In total 12 samples were generated, consisting of six replicates for each class
(spiked, unspiked).

Figure 1 (a) illustrates a sample spectrum comprising the set of intensities
(relative abundance of ions) measured at different m/z values across a particular
range. Such spectra are measured during the chromatographic period at discrete
time points, producing what is often called a ’run’. The chromatographic period
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is also referred to as elution time or retention time (RT). 2D possible visualiza-
tions of runs are given in panels (b and c) of Fig. 1, where the intensity at each
RT-m/z location is represented by a gray-level. The spectrum in (a) is the one
indicated by the vertical line at 1420 seconds in (b). The panels (d and e) are
close-up views within the range where the spiked-in peptide is located.

Each analyte (organic specimen under study) gives rise to more than one
peak in the measured spectra. Firstly, an analyte A with mass m can appear
with different charges (e.g., A+1, A+2, A+3) and because the actual quantities
being measured are m/z ratios, it gives peaks at the m/z values: m/1, m/2, m/3.
Secondly, because of the natural isotopic occurrence of the chemical elements,
different peaks are generated by the same analyte A at the same charge state.
For example, about 1.1% of the carbon atoms are carbon-13 isotopes instead
of carbon-12. These have an extra neutron in the nucleus and therefore a mass
higher by 1 Da. The spacing between the isotopic peaks depends on the charge
of the ions. A group of isotopic peaks is shown in Fig. 1(d), where the distance
between peaks is 1/3 Da, due to the +3 charge. The number of isotopic peaks
and their relative intensity depend on the chemical composition of the analyte
and therefore the distribution (pattern) of the isotopic peaks is mass dependent.
Note that our algorithm detects and align isotopic peaks. In order to retrieve
peptides from isotopic peaks procedures for assembling isotopes into peptides
can be used, such as the one implemented in msInspect [3].

2.2 Methods

PDA takes a set of runs as input and outputs a set of (isotopic) peaks. The
search strategy for detecting and aligning peaks acts on a three dimensional
search space with dimensions given by m/z value, RT and run identifier.

PDA performs the following sequence of steps:

1. Feature extraction: Extract features from individual runs (in our experiments
we use MZmine [7]).

2. Block construction: Split runs into blocks along the m/z axis.
3. Apply the following two steps to each block:

(a) Features clustering: Generate a common set of clusters using weighted
hierarchical clustering.

(b) Peak construction: Generate peaks from clusters.
4. Peak refinement: Refine peaks located nearby splitting points of blocks.

1. Feature Extraction. We use a routine from MZmine [7] called ”Centroid
peak detection” for extracting features from runs. A feature in a run is defined
here as the (m/z, RT) pair of coordinates of a local signal intensity maximum.
These coordinates are computed by first detecting local maxima in each scan
(spectrum). Certain features can then be discarded if their intensity is smaller
than a chromatographic threshold of the extracted chromatogram (XIC) that
contains the local maxima. An XIC is constructed by summing all intensities
across RT present within a m/z range (or bin).
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Fig. 1. (a) a sample spectrum (relative abundance of ions) measured at RT=1420s
indicated by the vertical line in (b). (b and c) 2D visualizations of two runs from
control and spiked-in samples. (d and e) are close-up views of the two runs within the
range 1305-1365 s and 432-434 Da where the spiked-in peptide is located.

2. Block Construction. To speed up the processing, runs are split into blocks
along the m/z-axis. Clustering and peak extraction are then performed on each
block independently, thus (possibly) processed in parallel. The peak refinement
step is applied to peaks detected nearby block boarders, in order to deal with
the initial splitting of true peaks.

3(a). Features Clustering. This step constitutes the core of PDA. The partic-
ularities of the LC-MS measurements lead us to introduce a weighted distance
within the clustering algorithm. The following properties of LC-MS measure-
ments were used for setting the values of weights. m/z measurements are rather
reproducible across different runs. The RT of the same analyte may, however,
greatly differ among distinct runs, even in the order of tens of seconds. It is
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therefore sensible to assign a larger weight to the m/z coordinate than to the
RT, thus enforcing small m/z variations while allowing for discrepancies in time.
Moreover, since our aim is also to align peaks over different runs, it is also desired
to group features from different runs. To this aim we use also the run identifier
as attribute for comparing features.

Our clustering operates on the set of all features, augmented with a ’run id’
component. Searching for peaks in this three-dimensional space is performed
by hierarchical clustering with average linkage and a novel similarity measure
defined below. Since the desired number of peaks is not known a-priori, we have
to estimate it. Estimation of the number of clusters can be performed by a model
selection criterion, like BIC or AIC (see e.g., [6] for an experimental comparison
of the effectiveness of these criteria). Here we adopt a more efficient knowledge-
based approach. Starting from a high number of clusters we apply a heuristic for
joining clusters which relies on domain knowledge about the minimal distance
in m/z and RT dimension between two valid peaks.

Clusters are generated as follows. Firstly, in order to overcome problems re-
lated to different m/z and RT scale, the standardized scores of the values (also
called z-scores) are used. Informally, for a value x (here m/z or RT value) from
a set X , the corresponding z-score measures how far the observation is from
the mean in units of standard deviation. The similarity measure used in PDA is
defined as follows. For two features F1 = (mz1, RT 1, r1), F2 = (mz2, RT 2, r2)

sim(F1, F2) = sqrt(w1 ∗ (mz1 − mz2)2 + w2 ∗ (RT 1 − RT 2)2) + w3 ∗ I(r1, r2)

where I(r1, r2) is 1 if r1 = r2 and zero otherwise, and w1, w2, w3 are weights
associated to the three attributes. We elaborate on the choice of the weights
values in the next section.

The dendrogram generated by hierarchical clustering is used for clustering
features. A (loose) user-given upper bound M on the desired number of clusters
is employed for computing the cutting threshold of the dendrogram. The output
of the feature clustering step consists of M 3-dimensional clusters.

3(b). Peak Construction. In this step nearby clusters are merged to form
peaks by means of the following algorithm. The distance between the mean m/z
values and mean RT values of each pair of centroid clusters is computed and
used in an iterative procedure that generate peaks. The procedure starts from a
given centroid (selected at random) as initial part of a peak. Then, centroids are
incrementally added to that peak if their distance from at least one element of
the actual peak is smaller than a threshold in m/z and RT. The construction of
a peak terminates when no centroid can be added to it. Then the construction
of a new peak can begin using the remaining centroids. The process terminates
when the set of centroids becomes empty.

4. Peak Refinement. The peak refinement step processes those peaks whose
features result distributed in clusters belonging to neighbour blocks. Because the
runs are split into independent, non-overlapping blocks, features that belong to
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the same true peak may lie on either side of a certain m/z cutting point. These
features will be assigned to different clusters even if they are close to each other
(corresponding clusters fulfil the peak construction constraints). Therefore, we
introduce a peak refinement step that joins such clusters. This is accomplished
by repeating the peak construction routine on the set of cluster centroids, or
more efficiently, on centroids close to block boarders.

The computational complexity of PDA is dominated by the Features clustering
step, that is quadratic in the number of features to be clustered. This number cor-
responds to the number of intensities occurring in a block. Then on the average,
when blocks are processed in parallel and assuming features are uniformly dis-
tributed, PDA (worse case) computational complexity is O((N/nb)2 + n2

centroids)
where N is the number o features, nb the number of blocks, and ncentroids the
number of centroids obtained after application of step 3(b).

3 Experimental Analysis

In the feature extraction step with ”Centroid peak detection” (MZmine [7]), we
used a fine bin size (0.02 Da) and a loose chromatographic threshold of 40%,
which caused a data reduction from the original measured intensities ∼ 1.8×107

per run to about 4.3 × 105. We split the runs at each 5 Da and produced blocks
containing a relatively small number of features, in the order of thousands. The
upper bound on the number of clusters M is set to one tenth of the total number
of intensities present in each block. Finally, weights of the three attributes m/z,
RT, and ’run id’ were set to 2, 0.01 and 0.1, respectively. These values are suitable
for the type of high resolution LC-MS measurements used in this study. Slight
changes of the values did not markedly affect the clustering results. As long as
the the m/z weight was significantly larger than the RT and the ’run id’ weights,
diversity within a cluster was kept moderate and the results were consistent.

PDA results using different m/z and RT weights are illustrated in Fig. 2,
while Fig. 3 shows resulting clusterings based on different values of ’the run’
id weight. For the purpose of illustration, we only show results on small yet
representative m/z, RT regions. Unit weights for the m/z and RT axes (regular
Euclidean distance) lead to undesired split of the peak on the right in Fig. 2(a).
Using the m/z axis alone (w = (1 0 0)) produces clusters that contain peaks of
arbitrary different RTs (b). The RT axis alone is also not sufficient for accurate
peak detection, since peaks are split in favor of small RT deviations (c). The
output of PDA using the weights selected in our experiments is shown in (d).

The ’run id’ attribute is used to discourage shifted values (in either m/z or
RT) from joining a cluster if other features from the same run already match
well with features from other runs. However, care should be taken about the
effects on the true peaks. This is illustrated in Fig. 3 (a and b), where different
markers indicate that the features originate from different runs and large markers
indicate cluster centers. A relatively high weight value for ’run ids’ can result
in clusters that contain more than one true peak. For example, in panel (b) the
top two and the bottom three peaks are grouped in two clusters, while the five
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(a) (b)

(c) (d)

Fig. 2. The influence of the m/z and RT weights on the clustering results (see text for
details). Different markers stand for different cluster membership of the features.

correct clusters should appear as in (a). Panels (c) and (d) show a zoomed view
on a different region of the run. Note that the features in (c) belong to a cluster
that lies beyond the shown RT limit and therefore its center is at about 1282
seconds. This cluster even comprises the peak on the left in Fig. 2 which has
similar m/z values but obviously different RTs. A small ’run id’ weight value
helps in isolating sparse features, as desired (see (d)).

Since the feature clustering step uses an upper bound M on the number of
clusters, features that belong to the same true peak can be assigned to different
clusters. To fix this problem, the peak construction step 3(b) was used with
thresholds for m/z and RT of 0.01 Da and 10 seconds, respectively. The m/z
threshold relates to the minimum distance between two different peaks along
the m/z axis, and can be calculated from the instrument set-up and the type of
measurements. Two distinct isotopic peaks can be 0.01 Da apart if they originate
from an analyte with charge +10, which is not practical. The RT threshold is
chosen such that within the time window it defines, two different compounds
with the same m/z value do not elute simultaneously. Our investigation revealed
that for this dataset double peaks are observed within 30 seconds only after
increasing the m/z window to 1 Da. It is therefore obvious that at 0.01 Da, all
peaks are separated within a time window of 20 seconds.

Results

The spiked-in peptide, Angiotensin 1, has theoretical m/z value 432.90032 Da
and RT value of 21.75-22.76 minutes, the latter estimated from the experiment
by our domain expert. The peptide gives rise to four isotopes (named here Pi,
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(a) (b)

(c) (d)

Fig. 3. The influence of the run identifier weight on the clustering results (see text
for details). Different markers indicate that the features originate from different runs,
large markers indicate cluster centers.

i = 1 . . . 4) with decreasing intensity and duration, located at 432.90032 Da
(highest intensity isotope), 433.29, 433.57, 433.91. While P1, P2, P3 were accu-
rately detected by the PDA, P4 was missed already by PDA’s first step (feature
extraction). This means that although the local maxima detection method is
simple, care should be taken in the choice of its parameters.

The results of PDA zoomed in a region containing the spiked-in peptide, are
shown in Figure 4. The hierarchical clustering produced a large number of clus-
ters belonging to the same isotope (a and c). Because the peak construction step
operates on the cluster centroids, their distance may exceed the estimated RT
threshold resulting in few peaks belonging to one isotope. More specifically, P1

and P2 both resulted represented by two peak clusters, with 31, 159, and 19,
117 features, respectively. P3 was detected as single peak with 33 features. All
clusters contain features from all the six spiked-in runs.

To get an estimate of the actual RT shifts across the runs we computed, for
each obtained peak cluster, a value here called ’average time shift’. This value is
defined as the mean of the minimum RT (pairwise) distances between features
within a cluster belonging to different runs. This measure describes the average
shift needed for alignment of features in a given cluster. The minimum pair-wise
distance reflects the amount of time required to consider two sets of features
(from two different runs) aligned. The behaviour of average time shift for some
values of the RT threshold used in the peak construction step is illustrated in
Figure 5. The horizontal line within each box represents the median value. The
vertical limits of each box are at the lower quartile and upper quartile values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



44 M.C. Codrea et al.

(a) (b)

(c) (d)

Fig. 4. Results of hierarchical clustering (a, c) and PDA (b, d). Occasionally, isotopic
peaks can result in more than one cluster as in (d).

The rest of the observations extend between the lower and upper whiskers. The
large amount of outliers (marked with ’+’) illustrates the difficulty of the align-
ment problem and substantiates the robustness of PDA. Even large drifts in RT
do not obscure the PDA. Different RT threshold settings (between 5 and 30 sec-
onds) do not cause significant changes in ’average time shift’, which indicates the
consistency of our initial assessment for a suitable threshold value. Moreover the
figure indicates the good quality of the experimental data. The observation that
75% of the shift values are within a range of less than 10 seconds suggests that in
most cases, local small shifts are sufficient for alignment. Thus local alignment
schemes seem to be suited for this type of mass spectrometry data.

Finally, to get a flavour about the performance of other algorithms for LC-
MS data alignment and peak detection, we consider two popular LC-MS data
processing tools: MZmine [7] and MetAlign [2]. They both perform first peak
detection followed by alignment. The nine parameters of MZmine’s peak detec-
tion routine, as well as the twenty parameters of MetAlign were set by our local
MS domain expert. We did not succeed in detecting the spike-in peptide using
MetAlign. MZmine detected isotopes only in few of the spiked runs, represented
by multiple peaks. In particular, the peak detection routine of MZmine detected
isotopes in four of the six spiked-in runs, with detection of only one or two of the
four isotopes. This lead to alignment results where P1 was detected four times,
three times represented by one peak from one run and the other time represented
by two peaks from different runs. P2 was identified by two peaks from different
runs and P1 by a single peak from a single run.
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Fig. 5. The behaviour of the minimum shifts among features within each cluster. 75% of
the values (within boxes) are smaller than 10 s indicating that local shifts are sufficient
for alignment. Different RT thresholds (5 to 30) did not cause significant changes, as
the general trend is only slightly increasing. The outliers (marked with ’+’) shows
robustness of PDA.

4 Conclusion

In this paper, we proposed a method for simultaneous peak detection and align-
ment with nanoLCFT-MS data. Results on a spiked-in dataset indicate the ef-
fectiveness of this approach. We are currently working on further refinement
steps such as: filtering out small cardinality clusters, irrespective of their loca-
tions within runs, removing clusters whose diameter in RT is too big (the elution
time range of a peptide is limited), and improving the peak construction step.
Moreover, we are planning to incorporate this technique in advanced biomarker
detection algorithms based on feature selection. Such a comparative profiling
implies the identification of clusters that contain relevant features for discrimi-
nation between control and case classes. A comparative analysis of results of the
extended method on other datasets will provide more through assessment of its
power as a computational tool for disease biomarker detection.
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Abstract. We propose a feature selection method for multiclass classifi-
cation. The proposed method selects features in backward elimination and
computes feature ranking scores at each step from analysis of weight vec-
tors of multiple two-class linear Support Vector Machine classifiers from
one-versus-one or one-versus-all decomposition of a multi-class classifica-
tion problem. We evaluated the proposed method on three gene expression
datasets for multiclass cancer classification. For comparison, one filtering
feature selection method was included in the numerical study. The study
demonstrates the effectiveness of the proposed method in selecting a com-
pact set of genes to ensure a good classification accuracy.

1 Introduction

Large number of genes together with relatively small number of samples is one
characteristic of gene expression data available for cancer classification. This
characteristic makes feature selection (FS) a necessary procedure for cancer clas-
sification with gene expression data to ensure reliable and meaningful classifi-
cation results along with other benefits such less data storage and computation
cost.

One category of multilclass classification methods are based on the combi-
nation of two-class (binary) classifiers. One-versus-one (OVO) or one-versus-all
(OVA) binary classifiers are constructed to separate one class from another or to
separate one class from all other classes respectively. These binary classifiers are
then combined to conduct multiclass classification prediction. OVO and OVA are
also two ways to extend popular Support Vector Machine (SVM) [1][2] classifi-
cation method for multiclass classification. For multiclass classification methods
that are based on OVO or OVA binary classifiers, one simple feature selection
strategy probably is to select feature variables for each of the binary classifiers
separately by using existing feature selection methods for two-class classifica-
tion. In this way, different binary classifiers actually are constructed in different
feature sub-spaces. However, combination of these binary classifiers is infeasi-
ble if the combination strategy is based on the distance of a sample to decision

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 47–56, 2007.
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boundaries of different binary classifiers. Unfortunately, the decision function
of SVMs (before taking the sign function) corresponds to such a distance mea-
surement and commonly used Winner-Takes-All combination strategy [3] for
one-versus-all binary SVMs is primarily based on that distance measurement.

Specially for OVO and OVA multiclass SVMs, we will develop in this paper a
feature selection method which is based on OVO or OVA binary SVM classifiers
and assume all binary classifiers in combination take the same set of features as in-
put variables. The proposed methods can be viewed as a multiclass generalization
of SVM-RFE [4] feature selection method for two-class classification. SVM-RFE
selects feature in backward elimination and uses coefficients of the weight vector of
a binary linear SVM to compute feature ranking scores. The proposed feature se-
lection method selects features using a backward elimination procedure similar to
that of SVM-RFE but computes feature ranking scores at each step from analysis
of the weight vectors of all OVO or OVA binary linear SVMs from OVO or OVA
decomposition of a multiclass classification problem. The method will be evalu-
ated on three multiclass gene expression datasets for cancer classification and will
also be compared with a filtering feature selection method.

The rest of the paper is organized as follows. Section 2 gives a short de-
scription of two-class SVMs and, OVO and OVA multiclass SVMs. Section 3
describes the SVM-RFE feature selection for two-class classification; Section 4
presents the proposed multiclass SVM-RFE feature selection method; Section 5
is about the numerical study on three multiclass gene expression datasets for
cancer classification. Section 6 contains the conclusions and some discussions.

2 SVMs

2.1 Two-Class SVMs

Support Vector Machines (SVMs) [1] [2] are one of the most popular supervised
classification methods due to its superior classification performance in many
applications. SVMs are also fairly insensitive to the curse of dimensionality and
efficient in handling classification problems of large scale in both samples and
input variables. SVMs was originally developed for two-class classification. First,
input sample vectors x are mapped from input space to a so-called feature space
via a mapping function Φ(·) : z = Φ(x), where z denotes a vector in the feature
space. Then, in the feature space, an optimal hyperplane discrimination function
f(z) = w ·z+b is constructed to separate samples from two classes. The mapping
function is implicitly defined by a kernel function which computes the inner-
product of vectors in the feature space: K(xi,xj) = zi · zj = Φ(xi) · Φ(xj).
Commonly used kernel functions are linear, polynomial and Gaussian [1]. SVMs
with a linear kernel function are referred to as linear SVMs.

2.2 Multiclass SVMs

Extension of SVMs from two-class to multiclass basically falls into two cate-
gories. The first category mutliclass SVMs consider all samples and all classes
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all together at once and formulate the multiclass classification problem as a
single quadratic optimization problem [5][6][7]. The second category of multi-
class SVMs are based on combination of several binary SVMs that are from
the decomposition of a multiclass problem into several two-class classification
problems [8][9][10][11][12][13]. OVO and OVA are two ways to decompose a mul-
ticlass problem and construct the binary classifiers for combination. Based on
the way that the binary classifiers in combination are constructed, this category
of multiclass SVMs are referred to as OVO-SVM or OVA-SVM. OVO-SVM and
OVA-SVM are the basis of the multiclass feature selection method to be pre-
sented.

OVO-SVM. Given a classification problem with M classes, OVO-SVM con-
structs M(M −1)/2 binary SVM classifers, each for every distinct pair of classes.
Each of binary classifiers takes samples from one class as positive and samples
from another class as negative. Max-Wins voting (MWV) [10] is one of the most
commonly used combination strategies for OVO-SVM. MWV assigns an instance
to a class which has the largest votes from M(M − 1)/2 OVO binary classifiers.

OVA-SVM. OVA-SVM constructs M binary classifiers and each binary classi-
fier classify one class (positive) versus all other classes (negative). Winer-Takes-
All (WTA) [3] is the most common combination strategy for OVA-SVM. WTA
strategy assigns a sample to the class whose decision function value is largest
among all the M OVA binary classifiers.

All OVO-SVMs in this paper are implemented with MWV combination strat-
egy while all OVA-SVMs in this paper are implemented with WTA combination
strategy.

3 SVM-RFE

SVM-RFE [4] as a feature selection method for two-class classification was ini-
tially developed for gene selection. It also has been successfully applied in other
applications, such as in cancer classification with mass spectrometry data [14].
Features are eliminated one by one in a backward selection procedure that is re-
ferred to as Recursive Feature Elimination (RFE) in [4]. At each step, coefficients
of the weight vector w of a linear SVM f(x) = w · x + b are used to compute
ranking scores for all the remaining features. The feature, say the i-th feature,
with the smallest ranking score (wi)2 is eliminated, where wi represents the cor-
responding i-th component of weight vector w. Using (wi)2 as ranking criterion
removes the feature whose removal changes the objective function least [15] [16].
This objective function is J = ‖w‖2/2 in SVM-RFE.

Once a feature is removed, a new linear two-class SVM is trained with all
the features left and all the remaining features are ranked again by using weight
vector of the new linear SVM. SVM-RFE repeats this procedure until only one
feature is left.
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4 Multiclass SVM-RFE

Although most of the existing feature selection methods are tailored towards
binary classification, feature selection for multiclass classification has begun to
draw more and more attention from researchers [17][18]. The new feature se-
lection method that we present in this section can be viewed as a multiclass
generalization of SVM-RFE [4] and is inspired by MSVM-RFE [15] feature se-
lection method for two-class classification. MSVM-RFE uses a backward feature
selection procedure similar to that of SVM-RFE but, at each recursive step, com-
putes feature ranking scores using weight vectors of multiple linear SVMs trained
on different sub samples of the original training data. Inspired by the good per-
formance of MSVM-RFE, we propose the following gene selection method for
multiclass classification with feature ranking scores computed from weight vec-
tors of multiple linear binary SVM classifiers from OVO-SVM or OVA-SVM
(linear kernel function is used for binary SVMs in OVO-SVM and OVA-SVM).

For a multiclass problem with M classes, suppose T linear binary SVM
classifiers are obtained from a OVO-SVM or OVA-SVM multiclass classifier;
T = M(M − 1)/2 for OVO-SVM and T = M for OVA-SVM. Let wj be the
weight vector of the j-th linear SVM and wji be the corresponding weight value
associated with the i-th feature; let vij = (wji)2. We can compute feature rank-
ing scores with the following criterion:

ci =
vi

σvi

(1)

where vi and σvi are mean and standard deviation of variable vi:

vi =
1
T

T∑

j=1

vij (2)

σvi =

√∑T
j=1 (vij − vi)

2

T − 1
(3)

Before computing the ranking score for each feature, we normalize weight vectors:

wi =
wi

‖wi‖
(4)

Note that, Eqs. (1)–(3) used to compute feature ranking scores in multiclass
SVM-RFE are same in form as those in MSVM-RFE. The difference is that, the
multiple linear SVM classifiers in multiclass SVM-RFE are derived from OVO-
SVM or OVA-SVM while the multiple linear SVM classifiers in MSVM-RFE are
from training on different sub samples of the original training data for the same
two-class problem.

With feature ranking criterion (1), features are selected using the following
backward elimination procedure similar to that of SVM-RFE and MSVM-RFE:
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1. Initialize:
Ranked feature set R = [ ];
Selected feature subset S = [1, · · · , d].

2. Repeat until all features are ranked:
(a) Get T linear SVMs from the training of an OVO-SVM (or OVA-SVM),

with features in S as input variables;
(b) Compute and normalize the weight vectors;
(c) Compute the ranking scores ci for features in S using (1);
(d) Find the feature with the smallest ranking score: e = argminici;
(e) Update: R = [e, R], S = S − [e];

3. Output: Ranked feature list R

We refer to the above proposed multiclass SVM-RFE with binary classifiers
from OVO-SVM and OVA-SVM as OVO-SVM-RFE and OVA-SVM-RFE, re-
spectively. As in SVM-RFE and MSVM-RFE, all features are ranked from the
RFE procedure. Earlier one feature is eliminated, lower is it ranked. Thus, nested
feature subsets are obtained similarly as in filtering feature selection methods
which however usually rank all features at a single step.

However, there is a risk in using feature ranking criterion (1). In a situation
that the standard deviation σvi is extremely small for some feature, Eq.(1) will
produce an extremely large ranking score even if the mean vi is small. Thus
we propose the following alternative ranking criterion by adding a small non-
negative constant ε to the denominator of ranking criterion (1) to deal with such
a situation:

ci =
v̄i

ε + σvi

(5)

We set ε = 1.0 in this paper. We respectively refer to ranking criteria (1) and
(5) as RC1 and RC2.

5 Numerical Study

Effectiveness of the proposed feature selection methods is evaluated on three
multiclass gene expression datasets: ALL [19], MLL [20] and SRBCT [21]. ALL
dataset is about classification of 6 subtypes of pediatric acute lymphoblastic
leukemia. Samples of MLL dataset are from 3 classes of leukemia: lymphoblastic
leukemia with MLL translocation, conventional acute lymphoblastic leukemia
and acute myelogenous leukemia. SRBCT dataset is about small, round, blue
cell tumors of childhood. For all the datasets, expression values of each gene are
normalized to zero mean and unit standard deviation, over all samples. During
the normalization process, in ALL dataset, we found 2064 genes whose expression
values show no variation across all the samples. These genes are removed in our
numerical study. Some basic information of the three datasets are summarized
in Table 1.
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Table 1. Basic information of the datasets

Dataset # Classes # Training Samples # Testing Samples # Genes

ALL 6 153 85 10524
MLL 3 57 15 12582

SRBCT 4 60 23 2308
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Fig. 1. Classification performance of the feature subsets selected by the proposed meth-
ods, on ALL dataset

We also include a filtering feature selection method in our numerical study for
comparison. The filtering method ranks genes on the basis of the ratio of their
between-classes to within-classes sum of squares [18]. For a gene i, this ratio is:

ri =
BSS(i)
WSS(i)

=

∑�
j=1

∑M
k=1 I(yj = k)(x̄ki − x̄.i)2

∑�
j=1

∑M
k=1 I(yj = k)(xji − x̄ki)2

(6)

where x̄.i denotes the average expression level of gene i across all samples and
x̄ki denotes the average expression level of gene i across samples belongs to the
k-th class; I(.) is the indicator function.

We ran all the feature selection methods on the training data only. Classi-
fication performance of the nested feature subsets with size varying from 1 to
200 were validated on the test data. For OVO-SVM-RFE, the natural choice of
the classification method is OVO-SVM; for OVA-SVM-RFE, OVA-SVM is the
natural choice. Even though, we also validated the subsets selected by OVO-
SVM-RFE and OVA-SVM-RFE respectively with OVA-SVM and OVO-SVM as
the classification methods. For all OVO-SVM and OVA-SVM in both the feature
selection phase and in the testing phase, linear kernel function was used for the
binary SVMs; OVO-SVM was implemented with MWV combination strategy
while OVA-SVM was implemented with WTA combination strategy.
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Fig. 2. Classification performance of the feature subsets selected by the proposed meth-
ods, on MLL dataset
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Fig. 3. Classification performance of the feature subsets selected by the proposed meth-
ods, on SRBCT dataset

Test error rates versus size of the feature subsets are plotted in Figs. 1–4 for
all datasets and for all the feature selection methods, with both OVO-SVM and
OVA-SVM respectively as the classification methods. From Figs. 1-3, we can see
that, first, OVO-SVM-RFE and OVA-SVM-RFE workbetter with feature ranking
criterion RC2 than with RC1; and second, OVA-SVM-RFE performs better than
OVO-SVM-RFE, with either RC1 or RC2. From Fig. 4, it is quite clear that the
performance of the filtering method is dataset-dependent. From these figures, we
also observe that the classification performance of OVA-SVM overall is better than
OVO-SVM, even on feature sets selected by OVO-SVM-RFE.

For a feature selection method, we take the most compact feature subset
with smallest number of test errors on as the best feature subset. Best feature
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Fig. 4. Classification performance of the feature subsets selected by the filtering
method on the three datasets, ALL, MLL and SRBCT

subsets selected by OVO-SVM-RFE and OVA-SVM-RFE with ranking criterion
RC2 achieve almost perfect classification results (0 or 1 misclassification error)
on all the datasets, but with only a few number of genes (36 at most) Best
feature sets selected by the filtering method make 2 (with OVO-SVM) or 4
(with OVA-SVM) errors on ALL dataset although achieve no-error classification
on MLL and SRBCT datasets. Without any feature selection, OVO-SVM and
OVA-SVM make perfect classification on MLL and SRBCT datasets, but make
2 classification errors on ALL dataset.

6 Conclusion and Discussion

In this paper we have explored new feature selection methods that are based on
one-versus-one and one-versus-all multiclass SVMs. The methods select features
in a backward elimination procedure similar to that of SVM-RFE and can be
viewed as a multiclass generalization of SVM-RFE. Feature ranking scores are
computed from weight vectors of multiple binary linear SVMs of OVO-SVM
or OVA-SVM, and two feature ranking criteria were proposed and tested. The
proposed multiclass feature selection methods were evaluated on three multiclass
gene expression data for cancer classification, together with one filtering feature
selection method.

The proposed methods, OVO-SVM-RFE and OVA-SVM-RFE, consistently
perform better with feature ranking criteria RC2 than with criterion RC1. With
only a smalll number of genes (36 at most) selected OVO-SVM-RFE and OVA-
SVM-RFE (with RC2 as the feature ranking criteria), the classification per-
formance of OVO-SVM and OVA-SVM are almost perfect on all the datasets,
and are better than or equal to the performance of OVO-SVM and OVA-SVM
with all the genes as inputs. MSVM-RFE [15] that inspired the work of this
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paper uses a ranking criterion similar to RC1 in form. Better performance of
OVO-SVM-RFE and OVA-SVM-RFE with feature ranking criterion RC2 than
with criterion RC1 implies that, even better performance of MSVM-RFE can be
expected when ranking criterion similar to RC2 is adopted.

For ranking criterion RC2, if we set ε = 0, RC2 will degenerate to RC1. The
performance difference of the proposed method with RC1 and RC2 indicates that
the non-negative constant ε in (5) does affect the gene ranking and gene selection
results of the proposed methods. Although RC2 with ε = 1 in this paper achieves
satisfactory results, better results can be expected if ε is optimized. Having said
that, optimizing ε at each iterative step of the RFE procedure is not an easy
task and efficient strategies need to be derived.

We also observed that, OVA-SVM-RFE overall performs better than OVO-
SVM-RFE, on all the datasets, with either RC1 or RC2 as the feature ranking
criterion. OVA-SVM also performs better than OVO-SVM, even on feature sets
selected by OVO-SVM-RFE. Generally, we do not expect OVA-SVM outper-
forms OVO-SVM, as many researchers have already observed [22][23]. However,
for gene expression datasets, the training samples are usually sparse as in our
study. OVA-SVM uses all the samples in one-versus-all manner to construct
the binary classifiers. We believe this probably explains the better performance
of OVA-SVM over OVO-SVM, which further explains the better performance
of OVA-SVM-RFE over OVO-SVM-RFE. For cancer classification with gene
expression data, especially when the number of available samples is small, OVA-
SVM-RFE and OVA-SVM are favorably recommended as the methods of choice
respectively for gene selection and classification.

Better performance of OVA-SVM over OVO-SVM even on feature sets selected
by OVO-SVM-RFE implies that the classification performance of the features
selected by OVO-SVM-RFE or OVA-SVM-RFE probably are not correlated so
much to OVO-SVM or OVA-SVM as classification method. The features selected
by OVO-SVM-RFE and OVA-SVM-RFE may also work well with classification
methods other than OVO-SVM or OVA-SVM and we need to investigate this
further.

Acknowledgement

The work is partly supported by a grant to J. C. Rajapakse, by the Biomedical
Research Council (grant no. 04/1/22/19/376), of Agency of Science and Tech-
nology Research, administered through the National Grid Office, Singapore.

References

1. Vapnik, V.: Statistical Learning Theory. Wiley Interscience (1998)
2. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-

sifiers. In: Computational Learing Theory. (1992) 144–152
3. Friedman, J.H.: Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford University (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



56 K.-B. Duan, J.C. Rajapakse, and M.N. Nguyen

4. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46(1-3) (2002) 389–422

5. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks 13 (2002) 415– 425

6. Crammer, K., Singer, Y.: On the learnability and design of output codes for
multiclass problems. In: Computational Learing Theory. (2000) 35–46

7. Weston, J., Watkins, C.: Support vector machines for multiclass pattern recogni-
tion. In: Proceedings of the Seventh European Symposium On Artificial Neural
Networks. (1999)

8. Duan, K.B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical
study. In: Multiple Classifier Systems. (2005) 278–285

9. Duan, K., Keerthi, S.S., Chu, W., Shevade, S.K., Poo, A.N.: Multi-category clas-
sification by soft-max combination of binary classifiers. In: Multiple Classifier
Systems. (2003) 125–134

10. Kreel, U.H.G.: Pairwise classification and support vector machines. In Scholkopf,
B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel Methods: Support Vector
Learning. The MIT Press (2002) 255–268

11. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass
classification. (2000)

12. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In Jordan, M.I.,
Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Sys-
tems. Volume 10., The MIT Press (1998)

13. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. J. of Artificial Intelligence Research 2 (1995) 263–286

14. Rajapakse, J.C., Duan, K.B., Yeo, W.K.: Proteomic cancer classification with mass
spectrometry data. American Journal of PharmacoGenomics 5(5) (2005) 281–292

15. Duan, K.B., Rajapakse, J.C.: Multiple SVM-RFE for gene selection in cancer
classification with expression data. IEEE Trans Nanobioscience 4(3) (2005) 228–
234

16. Rakotomamonjy, A.: Variable selection using SVM-based criteria. Journal of Ma-
chine Learning Research, Special Issue on Variable Selection 3 (2003) 1357–1370

17. Li, G., Yang, J., Liu, G., Xue, L.: Feature selection for multi-class problems us-
ing support vector machines. In: Proceedings of 8th Pacific Rim International
Conference on Artificial Intelligence(PRICAI-04). (2004) 292–300

18. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
Statistical Association 97(457) (2002) 77–87

19. Yeoh, E.J., Ross, M.E., Shurtleff, S.A., and et al: Classification, subtype discov-
ery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling. Cancer Cell 1 (2002) 133–143

20. Armstrong, S.A., Staunton, J.E., Silverman, L.B., and et al: MLL translocations
specify a distinct gene expression profile that distinguishes a unique leukemia.
Nature Genetics 30 (2002) 41–47

21. Khan, J., Wei, J.S., Ringn, M., and et al: Classification and diagnostic prediction
of cancers using gene expression profiling and artificial neural networks. Nature
Medicine 7(6) (2001) 673–679

22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Maching
Learning Research 5 (2004) 101–141

23. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Understanding Signal Sequences with Machine

Learning

Jean-Luc Falcone1,�, Renée Kreuter, Dominique Belin2, and Bastien Chopard1
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Abstract. Protein translocation, the transport of newly synthesized
proteins out of the cell, is a fundamental mechanism of life. We are
interested in understanding how cells recognize the proteins that are to
be exported and how the necessary information is encoded in the so
called “Signal Sequences”. In this paper, we address these problems by
building a physico-chemical model of signal sequence recognition, us-
ing experimental data. This model was built using decision trees. In a
first phase the classifier were built from a set of features derived from
the current knowledge about signal sequences. It was then expanded by
feature generation with genetic algorithms. The resulting predictors are
efficient, achieving an accuracy of more than 99% with our wild-type
proteins set. Furthermore the generated features can give us a biological
insight about the export mechanism. Our tool is freely available through
a web interface.

1 Introduction

1.1 Signal Sequences

Proteins synthesized in the cell must be transported to the correct cellular com-
partment so that they can achieve their role. This process is called protein tar-
geting and is a fundamental aspect of cell protein metabolism [1]. For instance
blood plasma proteins and polypeptidic hormones must be delivered to the ex-
tracellular space. We are interested in the secretion pathway, which involves
the targeting and transport of the proteins out of the cell. The protein complex
(called translocon) which exports the proteins varies from one species to another.

All the proteins that must be exported, carry a particular region of conserved
function, the signal sequence (SS) or signal peptide, located in N-terminal ex-
tremity. The length varies slightly from 10 to 50 amino-acids (AA). The protein
is exported before folding and the SS is usually cleaved after the export. The
precise location where the cleavage occurs is called the cleavage site.

The most interesting feature of SS is their inter- and intra-species variability.
Their sequence as well as their length vary. Thus, they do not carry any system-
atic consensus. However, three properties have been proposed as distinguishing
� Supported by the Swiss National Science Foundation.
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features of SS [2]: (i) They begin with an N-terminal region which includes one
or several positively charged lysine or arginine residues. This region is called the
N-Region. (ii) Following the N-Region, SS contain a stretch of hydrophobic AA
forming the so-called H-Region. (iii) In the majority of secreted proteins there
is a third region, the C-Region, located between the H-Region and the cleavage
site. It carries a weak consensus recognized by the leader-peptidase.

The above properties are too vague to easily determine whether or not a
protein will be secreted. The hypothesis that these three regions, as defined
above, characterize an exported protein is based on observations made on known
SS. However there are no experiments that confirm that these three properties
are sufficient and/or relevant for the recognition process. To address the problem
of correctly discriminating secreted proteins from the other ones (cytosolic),
artificial intelligence techniques have been considered.

1.2 Computer Predictions of Signal Sequences

Many methods for the recognition of SS have been proposed. For all these meth-
ods, the predictors are built by an algorithm based on supervised learning tech-
niques. The SignalP method is currently considered as the best classification
method [3] and is the most widely used. It consists of two feed-forward neural
networks [4]. The first is trained to recognize the SS itself; the second recognizes
the cleavage site.

SignalP cannot help us understand the physico-chemical properties recognized
by the translocon. The problem is intrinsic to the nature of classical neural
networks which does not allow the retrieval of high-level symbolic rules. Another
weakness resides in the fact that SignalP uses the existence of a valid cleavage site
as a strong classification criterion. Although it is true that most SS include such a
site, there are proteins like ovalbumin which are exported but lack a cleavage site.
Furthermore mutated SS are poorly recognized by existing predictors. Therefore
there is a need to develop new approaches with better prediction scores on such
proteins and which gives better insight into the mechanisms at work.

1.3 Decision Trees

In this paper we propose a novel approach based on decision tree classifiers to
understand how SS are recognized. Decision trees are classification programs that
can classify objects according to properties (or features). Different algorithms
exist to build such trees from a list of properties and a set of example objects
representative of the different classes. As it is the case with neural networks,
the learning strategy is supervised, i.e. based on a training set of sequences. The
output of this algorithm is a tree in which the non-terminal nodes are evaluations
based on the properties characterizing the objects being classified. The leaves of
the tree (the terminal nodes) are the possible classes.

An important advantage of decision tree building algorithms is that only the
properties necessary for the classification are retained. The most discriminant
properties appear at the root of the tree and the less discriminant ones are near
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the leaves. This allows us to identify the classification mechanisms explicitly,
from the most relevant to the least important one.

1.4 Machine Learning to Investigate Signal Sequences

Our goal was to apply the decision tree method to the problem of SS recogni-
tion. We started our investigation using only the N- and H-regions, because the
C-region is recognized by the cleavage enzyme after export but probably not by
the translocon itself.

Note that since these regions were only described qualitatively, it is necessary
to specify a procedure to measure them from a given protein sequence. We
propose in Sec. 2.2 a way to compute them.

The purpose of building a decision tree is not only the construction of a
new and better SS predictor, but also to show if one or more of the properties
mentioned above are relevant and sufficient. If we can reach good efficiency using
only these properties we can conclude that they are indeed sufficient. If not, an
extended set of features needs to be considered.

Hence, to generate these extra features (or to refine the parameters of existing
ones) we have considered feature generation with genetic algorithms. The evo-
lution will optimize individuals whose genes are potential new features. Those
features are mathematical functions modeling the various physico-chemical in-
teractions between translocon and the N-terminus of protein. For this purpose,
they compute a score for each protein according to the physico-chemical prop-
erties of the AA. To evaluate the fitness of the individuals, we add its gene (the
new features) to the existing features described above. The fitness is then the
performance of the resulting decision tree. This method can lead us not only
to improve our efficiency but to suggest new biological criteria and new wet-lab
experiments to confirm them.

In a first phase we focus our research on E. coli. This choice is motivated by
the large number of experimentally known secreted proteins and the existence
of a collection of mutant SS.

2 Decision Trees for Signal Sequences

2.1 Datasets

We used four datasets: (i) 104 wild-type E. Coli proven signal sequence proteins
dataset ; (ii) 160 wild-type E. Coli cytoplasmic proteins; (iii) a collection of 17
signal-defective mutants of the phoA, malE and rbsB genes; (iv) a collection of
145 maspin “gain-of-function” mutants and derived constructions.

The datasets (i) and (ii) were obtained from the UniRef100 database as fol-
lows: the set (i) was composed only the proteins with proven signal sequence
annotations after removal putative TAT proteins with the TatP predictor [5];
the set (ii) was composed of proteins containing the line: CC -!- SUBCELLULAR
LOCATION: Cytoplasm. The sequences of all datasets were truncated to the first
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70 AA. The final dataset was made by pooling together the four datasets for a
total of 427 instances (130 SS and 297 cytoplasmic proteins).

We lack space to describe properly the mutants collection, but all the datasets,
their descriptions and references are available online on [6].

2.2 Computation of the Signal Sequence Features

In order to build our decision tree and to assign specific values to the SS features
(properties), it is necessary to find a way to define the N- and H-regions and to
attribute them a score.

H-Region Features: The H-region score quantify the presence of a stretch of
hydrophobic AA. The difficulties in scoring the H-region are (i) to identify the
relevant stretch, (ii) to choose the most appropriate hydrophobicity scale and
(iii) to find the proper way to combine the hydrophobicity of each residue along
the stretch.

We compute four different H-region features, mixing two different hydropho-
bicity scales with two different calculations. The two scales are (i) AA hydropa-
thy [7]; (ii) percentage of buried residues [8]. The first is a composite index
obtained from different measurements and modified to match biological insight.
This scale is the most widely used in bioinformatics experiments. The second de-
rives from statistical structural data and only takes the distribution of a residue
at the surface or in the core of a set of globular proteins into account.

These two scales can be used in two different ways to define the H-region
feature score: we scan the sequence searching for the most hydrophobic stretch of
AA, or the longest one. A stretch is defined as a contiguous substring in which all
AA have an hydrophobic score larger than a given threshold (with respect to the
chosen scale). The threshold used is given by the average hydrophobicity of the
20 AA minus the standard deviation. Among all the stretches, we select the best
one. In the first calculation method we compute the sum of the hydrophobicity
of all its AA for each stretch. The H-region is then defined as the stretch with
highest sum. The final score is this largest sum. In the second calculation method,
the H-region is defined as the longest stretch. The final score is its length.

We chose the following terminology for these four features: HLK is the score
based on the Kyte-Doolittle scale and returning the longest stretch. H

V K
is based

on the same scale but returns the value of the most hydrophobic stretch. We use
the same notation scheme for the score derived from the percentage of buried
residues: H

LB
and H

V B
.

N-Region Features: In order to determine the N-region, we used the fact that
the N-region terminates where the H-region starts. Thus, the H-region had to
be computed first, as explained above. We observe that the four possible ways
to extract the H-Region give the same N-region. This is due to the fact that the
two hydrophobicity scales discussed above select the same AA as hydrophobic,
although they return different final values.
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Once the N-region has been identified, we compute its score. We again propose
two different features. The first one is the average charge N

Q
(p) of protein p and

the second one is the lysine-arginine density N
R
(p):

N
Q
(p) =

1
n(p)

n(p)+1∑

i=2

q(pi) , N
R
(p) =

1
n(p)

n(p)+1∑

i=2

r(pi)

where n(p) is the length of the N-Region, pi the ith AA of the protein and
q(pi) is the charge of AA pi. r(pi) is equal to 1 if pi is a lysine or arginine, 0
otherwise. The difference between these two features is that charged aspartate
and glutamate residues are neglected in N

R
.

2.3 Tree Building Algorithm and Test Procedure

We want to be able to classify a protein according to its location inside or
outside the cell, from the six features described above. Here we consider the
C4.5 tree building algorithm [9] because of the good open-source Weka 3 [10]
implementation. Several parameters of the C4.5 algorithm were tested, but the
best results were obtained by setting the pruning confidence parameter to 0.15
and the minimum number of instances parameter to 2.

We were mainly interested in the accuracy of the classifier: A = a+d
N where A

is the accuracy, a the number of true positives, d the number of true negatives
and N the total number of instances.

To detect over training we used stratified cross-validation tests. This technique
works as follows: the dataset (both signal and cytosolic sequences) is split in 10
subsets S1,...,S10 using random sampling preserving the ratio between positive
and negative instances. At each step 1 ≤ i ≤ 10, a tree Ti is built with all Sj

such that j �= i. The accuracy Ai of step i is computed by applying tree Ti

to Si. The final score is the average of Ai. Note that the final tree is the one
obtained with the full dataset. Thus, the stratified cross-validation method tests
the robustness of the tree building algorithm with respect to the dataset.

2.4 Results

The resulting tree, called SigTree, was built according to all properties discussed
above, and is presented in fig. 1. After a first score-node corresponding to the
N

Q
score, the tree splits in two main branches. The first one (low N

Q
score)

corresponds to 91.2% of all 297 cytosolic sequences, whereas the second branch,
corresponds to 77.7% of all 130 SS.

SigTree achieves an accuracy of 98.2% on the whole dataset, and a cross-
validation accuracy of 89.9% which is significant. We can now test separately
the wild type proteins (set i and ii) and the two mutants collections on the
resulting tree. The results are summarized on tab. 1.

As we said above, the detection of a cleavage site may not be a good indicator
of protein secretion. To verify this assumption, we built another tree by adding
a cleavage site feature as described in [11]. The results were almost identical to
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Fig. 1. SigTree. The circle nodes represent the features defined above. The square
leaves are the predicted classes. The first number between parenthesis represents the
total number of instances classified in the leaves; the second number is the number of
dataset sequences wrongly classified (it is omitted if all the sequences are well classified).
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Table 1. SigTree and SigTreeGA accuracy on the different datasets (computed on the
entire sets)

Dataset SigTree SigTreeGA

i+ii 97.4% 99.2%
iii 64.7% 70.6%
iv 89.7% 97.2%

the tree presented above. The cross-validation was only slightly better: 90.4%
instead of 89.9%. Therefore we decided to omit this feature in our predictor.

3 Features Generation with Genetic Algorithms

We now want to extend our set of six initial features using Genetic Algorithms
(GA). An individual in the GA population will code for a set of new features.
These features represent measures of interactions of the N-terminus of proteins
with the translocon. Since we do not know how many new features are necessary
to improve the classifiers, we used variable size individuals. Those indivuals
ranged between one and seven genes and were initialized with four random genes.

As those interactions are depending on the AA physico-chemical properties we
consider for each AA the values of its physico-chemical properties. However the
large number of AA properties compiled in the database AAIndex [12] (more
than 500) is impracticable. Thus we have reduced the existing set with the
method described in [13] to a set of 45 clusters. This set is available on-line
on [6]. A feature is now defined by two components: (i) one of the 45 physico-
chemical properties P ; (ii) a reduction function which combines the value of P
for the AA of the given protein. Each reduction function represents a possible
type of interaction between a newly synthesized protein and the translocon.

3.1 Genetic Algorithm Components

Genes: Each gene of the individuals is a possible feature. When a feature is
applied on a protein, we first generate a numeric array by replacing each AA
with its corresponding value of the coded property. The the reduction function
is then applied on this array and returns one number: the feature score for the
protein.

We have designed four types of reduction functions defined by an algorithm
and structural parameters. Those parameters are optimized by the GA evolution.
The reduction functions we chose and their associated parameters are:

Sliding Windows: A sliding window reduction returns the minimum or the max-
imum sum of all substring of l AA along the protein.
Parameters: the window size l, a Boolean indicating whether the max or min
of the sums is chosen.
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Stretch operator: This reduction works as the H-region feature of Sect. 2.2 but
now with an adjustable threshold value.
Parameters: a number representing the threshold, a Boolean indicating whether
the highest stretch or the lowest one is returned.

Helix Window: This function assumes that the SS has an helical structure (not
necessarily an α-helix) of period λ AA. For all λ possible offsets, it computes
the sum of the AA along the SS, with stride λ.
Parameters: an integer λ representing the helix period in AA, a Boolean indi-
cating whether the max or min of all the sums is chosen.

Sliding Helix Window: This reduction function is a combination of the sliding
window and the helix window. It proceeds like the latter but sums up only l AA
at time. For example, for λ = 3 and l = 4, we will first add AA with indices
0, 3, 6, 9, then AA with indices 1, 4, 7, 10 and so on.
Parameters: an integer λ representing the helix period, the window size l, a
Boolean indicating whether the max or the min is taken.

Individuals and Fitness: The fitness is computed by first including the fea-
tures of the individual to the previous set of six features described above and then
by training a decision tree with this extended feature set. The cross-validation
of the resulting classifier is computed on the whole dataset and returned. Note
that if the same feature appears more than once, the tree building algorithm will
use only one.

GA Operators: We chose the classical one-point crossover and point mutation
operators but adapted for variable size individuals. For the crossover we sim-
ply draw a different crossing point for each mate. For the mutation, we choose
randomly for each individual either to add a single gene or to delete an exist-
ing one. We used the n-genes, evolutionnary computing environment described
in [14] and available on [15].

3.2 Results

New Features. Different runs of our system converge to the same 3 new fea-
tures. The first two are interpretable: (i) F1: a Sliding Helix Window which
minimizes an hydrophobicity property with l = 4 and λ = 4; (ii) F2: an Heli-
cal window of period 3 which maximizes a turn/coil-propensity. We point out
that the periods found are good approximation of the α-helix period (3.6 AA).
These two new features are consistent with previous claims about the secondary-
structure of the signal-sequence [16].

The third feature, F3, is a stretch operator which minimizes a property which
results from a cluster (see Sect. 3) whose meaning is difficult to understand.

Resulting Tree. The resulting tree (SigTreeGA) is similar to SigTree in its
structure and the distribution of the instances. The performance is significantly
improved with a cross validation of 93.9%. The value on the specific datasets
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Fig. 2. SigTreeGA. The circle nodes represent the features defined above. The square
leaves are the predicted classes. The first number between parenthesis represents the
total number of instances classified in the leaves; the second number is the number of
dataset sequences wrongly classified (it is omitted if all the sequences are well classified).

are better too. On the entire wild-type protein dataset, we reach an impressive
accuracy score of 99.2% and the recognition of mutants is improved. The results
are summarized in tab. 1. This predictor is available on [6].
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If we analyze now the place of the new features in the tree, we can see that
these new features are placed below the first set of operators, allowing to refine
the result of the first classifier. The first two new features are placed in the low
N

Q
branch where the bulk of the non-secreted proteins are classified (271 out

of 297). The extra features and their usage in the tree indicate an important
role of secondary structure in SS recognition. Not only two of new features are
related to helical motives, but also the role of F2 in the tree can be viewed as
eliminating proteins whose propensity of coil/turn formation is to high.

4 Discussion

The first tree produced (SigTree) shows good performances on our datasets.
Further, the fact we can omit detection of a valid cleavage site is an indication
that our approach is not fooled by another signal which is only relevant to a
process taking place after the export.

However, the addition of new features generated by GA allow us to produce
a better classifier (SigTreeGA). This improvement justifies our approach and
emphasizes the need to provide a more complete theoretical description of SS.
Moreover the generated feature F1 and F2 give weight to the hypothesis of SS
(α-)helical structure.

Most of the mutants in our datasets are not explainable by the established
theory. We hope that our new features will eventually reveal how these mutations
have changed the export.

In the future we plan to extend our set of reduction functions to model other
possible interactions between the translocon and the SS. Furthermore, we will
train decision trees on taxonomic groups other than E. coli. Since our trees are
in fact biological models, the decisions trees of other species/groups can give
us insight into the biological differences between their translocons. Finally, this
method can be applied to other proteomic challenges, like the prediction of N-
terminal acetylation.
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Abstract. A critical challenge of the postgenomic era is to understand how 
genes are differentially regulated in and between genetic networks.  The fact 
that such co-regulated genes may be differentially regulated suggests that subtle 
differences in the shared cis-acting regulatory elements are likely significant, 
however it is unknown which of these features increase or reduce expression of 
genes.  In principle, this expression can be measured by microarray experi-
ments, though they incorporate systematic errors, and moreover produce a lim-
ited classification (e.g. up/down regulated genes).  In this work, we present an 
unsupervised machine learning method to tackle the complexities governing 
gene expression, which considers gene expression data as one feature among 
many.  It analyzes features concurrently, recognizes dynamic relations and gen-
erates profiles, which are groups of promoters sharing common features.  The 
method makes use of multiobjective techniques to evaluate the performance of 
profiles, and has a multimodal approach to produce alternative descriptions of 
same expression target.  We apply this method to probe the regulatory networks 
governed by the PhoP/PhoQ two-component system in the enteric bacteria Es-
cherichia coli and Salmonella enterica.  Our analysis uncovered profiles that 
were experimentally validated, suggesting correlations between promoter regu-
latory features and gene expression kinetics measured by green fluorescent pro-
tein (GFP) assays. 

1   Introduction 

Genetic and genomic approaches have been successfully used to assign genes to dis-
tinct regulatory networks.  However, little is known about the differential expression 
of genes within a regulon.  At its simplest, genes within a regulon are controlled by a 
common transcriptional regulator in response to the same inducing signal.  Moreover 
it is suggested that subtle differences in the shared cis-acting regulatory elements are 
probably significant in the genes expression.  However, it is not known which of these 
features, independently or collectively, can set expression patterns apart.  Indeed, 
similar expression patterns can be generated from different or a mixture of multiple 
underlying features, thus, making it more difficult to discern the causes of analogous 
regulatory effects.  
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The material required for analyzing the promoter features governing bacterial gene 
expression is widely available.  It consists of genome sequences, transcription data, 
and biological databases containing examples of preciously explored cases.  In princi-
ple, genes could be differentiated by incorporating into the analysis quantitative and 
kinetic measurements of gene expression [1] and/or considering the participation of 
other transcription factors [2-4].  However, there are constraints in such analyses due 
to systematic errors in microarray experiments, the extra work required to obtain ki-
netic data and the missing information about additional signals impacting on gene  
expression.  These constraints hitherto allow a relatively crude classification of gene 
expression patterns into a limited number of classes (e.g., up- and down-regulated 
genes [5, 6]), thus concealing distinctions among expression features, such as those 
that characterize the temporal order of genes or their levels of intensity  

Here we describe an unsupervised machine learning method that discriminates 
among co-regulated promoters by simultaneously considering both cis-acting regula-
tory features and gene expression.  By virtue of being an unsupervised method, it is 
neither constrained by a dependent variable [2, 7], such as expression data, which 
would restrict the classification to the dual expression classes reported by microarray 
experiments; nor it requires pre-existing kinetic data.  Our method treats each of the 
promoter features with equal weight, because it is not known beforehand which fea-
tures are important.  Thus, it explores all of the possible aggregations of features; and 
applies multiobjective and multimodal techniques [8, 9] to identify alternative optimal 
solutions that describe  target sets of genes from different perspectives. 

We applied our methodology to the investigation of genes regulated by the PhoP 
protein of Escherichia coli and Salmonella enterica serovar Typhimurium.  We re-
covered several profiles that were experimentally validated [10] to establish that PhoP 
uses different configurations of promoter to regulate genes.  We finally correlated 
these groups with more accurate independent experiments that measure gene expres-
sion over time by using GFP assays. 

2   Methods 

The purpose of this method is to identify all of the possible substructures, here termed 
profiles (i.e., groups of promoters sharing a common set of features), that characterize 
sets of genes.  These common attributes can ultimately clarify the key cis-features that 
produce distinct kinetic patterns, shedding light in the transcriptional mechanisms that 
the cell employs to differentially regulate genes belonging to a regulon. 

The identification of the promoter features that determine the distinct expression 
behavior of co-regulated genes is a challenging task because (i) the difficulty in ascer-
taining the role of the differences in the shared cis-acting regulatory elements of co-
regulated promoters; (ii) detailed kinetic data that would help the classification of  
expression patterns is not always available, or it is available for a limited subset of 
genes; and (iii) the limited extent of genes regulated by a transcriptional factor. To 
circumvent these constrains, our method explores all of the possible cis-feature ag-
gregations, looking for those that better characterize different subset of genes; uses an 
unsupervised approach, where pre-existing classes are not required; and allows a 
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fuzzy incorporation of promoters to refined hypothesis which enables a same instance 
to support more than one hypothesis. 

Our method represents, learns and infers from structural data by following four 
main phases:  (1) Database conformation;  (2) Profile learning;  (3) Profile evalua-
tion  (4) Evaluation of external classes. 

2.1   Database Conformation 

Biological Model. Multiple independent and interrelated attributes of promoters, 
naturally encoded into diverse data types, should be considered to perform an inte-
grated analysis of promoter regulatory features.  We focus on four types of features 
for describing our set of co-regulated promoters [2, 3, 10, 11]: “submotifs”, fix-length 
DNA motifs  from transcriptional regulator binding sites, represented by position 
weight matrices [12] (Fig 1.a). We used these matrices to prototype DNA sequences, 
where its elements are the weights used to score a test sequence to measure how close 
that sequence word matches the pattern described by the matrix; “orientation”, which 
characterizes the binding boxes as either in direct or opposite orientation relative to 
the open reading frame; “RNA pol sites”, represents the RNA polymerase: their loca-
tion in the chromosome is studied as a distribution and encoded into fuzzy sets (close, 
medium, and remote). It also models the class of sigma 70 promoter [13]: class I pro-
moters bind to upstream locations (Fig 1.b). By contrast class II promoters bind to 
sites that overlap the promoter region. [14](Fig 1.c); and “expression”, which consid-
ers gene expression from multiple experiments represented as vector patterns. See 
[15] for a detail description of the learning process of these features. 
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Fig. 1. Different cis-features participating in the regulation scheme.  a) PhoP binding box 
modeled as position weight matrices shown as logos: The characters representing the sequence 
are stacked on top of each other for each position in the aligned sequences. The height of each 
letter is made proportional to its frequency..  b-c)Two transcription factors had binded to a 
DNA strain and recruited RNA polymerase (Class I/II respectively). A PhoP box might be lo-
cated in the same strain as the polymerase (b) or in the opposite direction (c).   

Representation Model.  We use fuzzy sets as a common framework to represent the 
domain independent features. We cluster promoters considering each feature inde-
pendently by using fuzzy C-means clustering (FCM) method and a validity index [16] 
to estimate the number of clusters, as an unsupervised discretization of the features  

[9, 17].  For example, we obtained three clusters for the “expression” feature ( 1
1E : 

strong evidence of upregulation;  1
2E : mild evidence of upregulation; and 1

3E : evi-

dence of downregulation).  As a result of this process, we obtain initial prototypes of 
profiles, and are able to account for the variability of the data by treating these  
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features as fuzzy (i.e., not precisely defined) instead of categorical entities. Thus, our 
database is conformed by the membership of each promoter to each of the cluster of 
every feature. 

2.2   Profile Learning 

Our method uses a conceptual clustering approach to incrementally find significant 
characterization of promoters (profiles) while exploring the features space [18-20].  
Initial profiles are aggregated to create compound higher level profiles (i.e. offspring 
profiles) by using the fuzzy intersection1.  In a hierarchical process, the number of 
features shared by a profile is increased, resulting in a lattice of profiles.  Level n pro-
files are built by aggregating level n-1 profiles (Fig. 2).  This is because the method 
re-discretizes the original features: 

n

k jk

n

k fkjkfj xV
11

/
 

(1) 

where jkμ is the membership of the promoter k to cluster j; and kfx is the original raw 

data for feature f.  This allows to the prototypes of the profiles to be dynamically 
adapted to the promoters recovered by it.  In account of these new prototypes, the 
membership of the entire database of promoters is re-evaluated: 
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where fjw is the “bandwith” of the fuzzy set fjV  [16].  This allows re-assignations of 

observations between sibling profiles [21], which is especially useful to gain support 
to hypothesis in problems, such as ours, that have a reduced number of samples.  

2.3   Profile Evaluation 

We applied multiobjective and multimodal techniques to evaluate the performance of 
the profiles [8, 9, 22], considering the conflicting criteria of the extent of the profile, 
and the quality of matching among its members and the corresponding features. 

The extent of the profile is calculated by using the hypergeometric distribution that 
gives the probability of intersection (PI) of an offspring profile and its parents:  
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where iV is an alpha-cut of the offspring profile, of size h; jV is an alpha-cut of the un-

ion of its parents, of size n; p is the number of promoters of the intersection; and g is 
the number of candidates.  The PI is an adaptive measure that is sensitive to small sets 
of examples, while it retains specificity with large datasets [23]. 
                                                           
1 Fuzzy logic-based operations, such as T-norm/T-conorm, include operators which are used as 

basic logic operators, such as AND or OR, [16]. In this work we used the MINIMUN and 
MAXIMUM as T-norm and T-conorm, respectively. 
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Fig. 2.  Schematic view of the method. The method navigates through the feature-space lattice 
generating and evaluating profiles. Hierarchically, profiles of one level are combined to gener-
ate the profiles of the following one. Observations can migrate from parental to offspring clus-
ters (i.e., hierarchical clustering), and among sibling clusters (i.e., optimization clustering). 

The quality of matching between promoters and features of a profile (i.e., similar-

ity of intersection (SI)) is calculated using the equation (4), where αU is an alpha-cut 

of the profile i and αn  is its number of elements. 

( ) { }αμμμ αα
α

>=−= ∑ ∈ ikikUk iki UfnVSI :1)(  (4) 

The tradeoff between the opposing objectives (i.e., PI and SI) is estimated by se-
lecting a set of solutions that are non-dominated, in the sense that there is no other so-
lution that is superior to them in all objectives (i.e., Pareto optimal frontier) [8, 9]. 
The dominance relationship in a minimization problem is defined by: 

)()()()( bOajObOaOiiifba jjii <∃≤∀≺  (5) 

where the iO and jO are either PI or SI.  This approach is less biased than weighting 

the objectives  because it identifies the profiles lying in the Pareto optimal frontier  
[8, 9], which is the collection of local multiobjective optima in the sense that its 
members are not worse than (i.e. dominated by) the other profiles in any of the objec-
tives being considered. 

Another objective indirectly considered is the profile diversity, which consists of 
maintaining a distributed set of solutions in the Pareto frontier, and thus, identifying 
clusters that describe objects from alternative regulatory scenarios.  Therefore, our 
approach applies the non-dominance relationship locally, that is, it identifies all non-
dominated optimal profiles that have no better solution in the local neighborhood  
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[8, 9].  We evaluate niches by applying equation (3) to every pair of solution and es-
tablish a small threshold value as boundaries of neighborhoods. 

2.4   Evaluation of External Classes  

This proposed unsupervised method, in contrast to supervised approaches, does not 
need the specification of output classes. Consequently, the discovered profiles can be 
used for independently explain external classes as a process often termed labeling [7] 

Instead of choosing a single profile to characterize an external target set, the 
method selects all of the profiles that are correlated enough to the query set.  To find 
its classes of equivalence it applies equation (3) to the target set and the entire collec-
tion of profiles previously produced.  In this way, the method can recover all of the al-
ternative profiles that match the external class, including the most specific and general 
solutions.  

3   Results 

We investigated the utility of our approach by exploring the regulatory targets of the 
PhoP protein in E. coli and S. enterica, which is at the top of a highly connected net-
work that controls transcription of dozens of genes mediating virulence and the adap-
tation to low Mg2+ environments [24].  As little is known about the mechanism by 
which cis-regulatory features govern gene expression, we searched through the space 
of all potential hypotheses; evaluated them, by considering both their extent and simi-
larity of the recovered promoters; and obtained alternative descriptions for target set 
of genes.  Moreover, to tackle constrains of the crude classification obtained by mi-
croarray experiments -which would not have allowed finding detail topologies of 
promoters- in an unsupervised approach we modeled gene expression as one feature 
among many. 

We demonstrated that our method makes predictions at two levels: it detects new 
candidate promoter for a regulatory protein; and it indicates alternative possible con-
figurations by which genes previously identified as controlled by a regulator are  
differentially expressed. We recovered several optimally evaluated profiles, thus, re-
vealing distinct putative profiles that can describe the PhoP regulation process: 

One profile ( 4
2

4
3

4
2

4
1 PMEO : PI=1.57E-4, SI=0.002) corresponds to canonical PhoP-

regulted promoters  (e.g., those of the phoP, mgtA, rstA, slyB, yobG, ybjX, ompX, 
PagP, pdgL, pipD, and pmrD  genes) characterized by a class II RNA polymerase 
sites situated close to the PhoP boxes, high expression patterns and a typical PhoP box 
submotif in a direct orientation.  Notably, this profile recovers promoters previously 
not known to be directly regulated by PhoP.  The method was also able to describe 
this target by using other profiles, being the most general ones composed of only two 
features (Fig 3.a) 

Another profile ( 4
1

4
2

4
1

4
3 POME :PI=3.53E-4, SI=0.032) includes promoters (e.g., 

those of the mgtC, mig-14, pagC, pagK, and virK genes of Salmonella) that share 
PhoP boxes in the opposite orientation of the canonical PhoP-regulated promoters, as 
well as class I RNA polymerase sites situated at medium distances from the PhoP 
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boxes.  As expected, the method was able to identify this target set by more general 
hypothesis that aggregates again only two features (Fig 3.b). 

Finally, another profile ( 3
4

3
2

3
2 POE : PI=6.48E-06, SI=0.070), which is slightly dif-

ferent from the former, includes promoters (e.g., those of the ompT gene of E. coli 
and the pipD, ugtL and ybjX genes of Salmonella) is defined by a PhoP binding site in 
the opposite orientation, the RNA polymerase of the canonical PhoP regulated pro-
moters and a mild evidence of upregulation.  The method was also able to character-
ize this target by a specific Phop box submotif and the same type of RNA polymerase. 

The above profiles differ in the number of features because our method uses a mul-
tivariate environment, where feature selection is locally performed for each profile, as 
not every feature is relevant for all profiles.  The predictions made by our method 
were experimentally validated [10] to establish that the PhoP protein uses multiple 
mechanisms to control gene transcription. 

Furthermore, as these profiles can be used to effectively explain the different ki-
netic behavior of co-regulated genes, we measured the promoter activity and growth 
kinetics for GFP reporter strains with high-temporal resolution (Fig. 4); and obtained 
independent target sets by clustering them by using FCM.  We found that the cluster 
that recovers those promoters that expressed earlier rise times and higher levels of 
transcription (e.g. mgtA, ompX, pagP, phoP, pmrD, rstA, slyB, ybjX, yobG) is corre-

lated to profile 4
2

4
3

4
2

4
1 PMEO  (p-value < 0.03) (Fig. 3.a).  Another target set includes 

those promoters that expressed the latest rise time and lowest levels of transcription 
(e.g. mgtC, mig-14, pagC, pagK, pipD, ugtL, virK, pagD); and it is correlated to pro-

file 4
1

4
2

4
1

4
3 POME  (p-value < 0.013) (Fig. 3.b).  The cluster which contains the promot-

ers that showed intermediate values (e.g., those of the ompT gene of E. coli and the 

pipD, ugtL and ybjX genes of Salmonella) is correlated to profile 3
4

3
2

3
2 POE  (p-value < 

0.025)  
This detailed analysis of the gene expression behavior would not be possible to be 

obtained by applying a supervised machine learning approach because of the lack of 
kinetic data for some promoters.  

4   Discussion 

We showed that our method can make precise mechanistic predictions even with in-
complete input dataset and high levels of uncertainty; making use of several charac-
teristics that contribute to its power: (i) it considers crude gene expression as one  
feature among many (unsupervised approach), thereby allowing classification of pro-
moters even in its absence; (ii) it has a multimodal nature that allows alternative de-
scriptions of a system by providing several adequate solutions [9] that characterize a 
target set of genes; (iii) it allows promoters to be members of more than one profile 
by using fuzzy clustering thus explicitly treating the profiles as hypotheses, which are 
tested and refined during the analysis; and (iv) it is particularly useful for knowledge 
discovery in environments with reduced datasets and high levels of uncertainty.  
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Fig. 3. Chart of Correlated Profiles. Targets are display at the center of each chart, sur-
rounded by the profiles that hit them. Optimal profiles are situated closer to the targets. For 
each profile it is displayed the features that characterizes it, the promoters that recovers (bold-
face belonging to the target, and italic not belonging to it) and the correlation to the target set.  
E stands for “Expression”, P for “RNA Pol. Sites”, O for “Orientation” and “M” for “Submo-
tif”; subscripts denote the cluster and superscripts the re-discretized level.   
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Fig. 4. Rise time and levels of transcription. Transcriptional activity of wild-type Salmonella 
harboring plasmids with a transcriptional fusion between a promoterless gfp gene and the Salmo-
nella promoters. The activity of each promoter is proportional to the number of GFP molecules 
produced per unit time per cell [dGi(t)/dt]/ODi(t)], where Gi(t) is GFP fluorescence from wild-type 
Salmonella strain 14028s, and ODi(t) is the optical density.  The activity signal was smoothed by a 
polynomial fit (sixth order).  Details about genetic experiments can be found in 
http://www.pnas.org/ and about GFP assays available under requirements to the authors. 
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The predictions made by our method were experimentally validated [10] to estab-
lish that the PhoP protein uses multiple mechanisms to control gene transcription, and 
is a central element in a highly connected network.  These profiles can be used to ef-
fectively explain the different kinetic behavior of co-regulated genes. 
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Abstract. Biomedical research has been revolutionized by high-throughput 
techniques and the enormous amount of biological data they are able to 
generate. The interest shown over network models and systems biology is 
rapidly raising. Genetic networks arise as an essential task to mine these data 
since they explain the function of genes in terms of how they influence other 
genes. Many modeling approaches have been proposed for building genetic 
networks up. However, it is not clear what the advantages and disadvantages of 
each model are. There are several ways to discriminate network building 
models, being one of the most important whether the data being mined presents 
a static or dynamic fashion. In this work we compare static and dynamic models 
over a problem related to the inflammation and the host response to injury. We 
show how both models provide complementary information and cross-validate 
the obtained results.  

1   Introduction 

Advances in molecular biology and computational techniques permit the systematical 
study of molecular processes that underlie biological systems (Durbin et al., 1998). 
One of the challenges of this post-genomic era is to know when, how and for how 
long a gene is turned on/off. Microarray technology has revolutionized modern 
biomedical research in this sense by its capacity to monitor the behavior of thousands 
of genes simultaneously (Brown et al., 1999; Tamames et al., 2002). The 
reconstruction of genetic networks is becoming an essential task to understand data 
generated by microarray techniques (Gregory, 2005). The enormous amount of 
information generated by this high-throughput technique is raising the interest in 
network models to represent and understand biological systems.  

Systems biology research arises at this point as the field to explore the life 
regulation processes in a cohesive way making use of the new technologies. Proteins 
have a main role in the regulation of genes (Rice and Stolovitzky, 2004), but 
unfortunately, for the vast majority or biological datasets available, there is no 
information about the level of protein activity. Therefore, we use the expression level 
of the genes as an indicator of the activity of proteins they generate.  

Gene networks represent these gene interactions. A gene network can be described 
as a set of nodes which usually represent genes, proteins or other biochemical entities. 
Node interaction is represented with edges corresponding to biologic relations.  
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There is a wide range of models available to build genetic networks up. One of the 
differences between such models is whether they represent static or dynamic 
relations. Static modeling explains causal interactions by searching for mutual 
dependencies between the gene expression profiles of different genes (van Someren et 
al., 2002). Clustering techniques are widely applied for static genetic network, since 
they group genes that exhibit similar expression levels.  

In dynamic modeling, the expression of a node A in the network at time t+1 can be 
given as the result of the expression of the nodes in the network with edges related to 
A at time t (van Someren et al., 2002). The understanding of the relations helps to  
describe all the relations occurring in a given organism we would be able to know the 
behavior of such organism throughout time. 

The question arises as which network model is the most appropriate given a set of 
data. In the present work we have applied both static (K-means clustering method, 
(Duda and Hart, 1973) ) and dynamic network models (a Boolean method, described 
in (D’onia et al., 2003) and implemented in (Velarde, 2006) and a graphic Gaussian 
method (GGM) (Schäfer and Strimmer, 2005)) to a set of data derived from an 
experiment on inflammation and the host response to injury (Calvano et al., 2005). 
The results show how dynamic models are capable to recover temporal dependencies 
that static models are not able to find. Temporal studies are becoming widely used in 
biomedical research. In fact, over 30% of published expression data sets are time 
series (Simon et al., 2005).  

2   Problem Description 

In this work we compare the behavior of static vs. dynamic modeling in a problem 
derived from the inflammation and the host response to injury. On the one hand, static 
modeling searches for relations between the expression levels of genes throughout 
time. The relation found by static methods might not only be similar behavior 
throughout time (direct correlation), but an inverse correlation (two genes having 
exactly opposite profiles over time), a proximity on the expression values (distance 
measures such as Euclidean Distance or City block distance) (see Fig. 1). On the other 
hand, dynamic modeling retrieves temporal dependencies among genes, i.e., it detects 
dependencies of a gene at time t+1 related to some other(s) gene at time t (see Fig. 1). 

To compare the performance of these two models, we have applied them to a data 
set derived from an experiment over inflammation and the host response to injury as 
part of a Large-scale Collaborative Research Project sponsored by the National 
Institute of General Medical Sciences (www.gluegrant.org) (Calvano et al., 2005). 
Human volunteers have been treated with intravenous endotoxin and compared to 
placebo, obtaining longitudinal blood expression profiles. Analysis of the set of gene 
expression profiles obtained from this experiment is complex, given the number of 
samples taken and variance due to treatment, time, and subject phenotype. The data 
were acquired from blood samples collected from eight human volunteers, four 
treated with intravenous endotoxin (i.e., patients 1 to 4) and four with placebo (i.e., 
patients 5 to 8). Complementary RNA was generated from circulating leukocytes at 0, 
2, 4, 6, 9 and 24 hours after the and hybridized with GeneChips® HG-U133A v2.0 
from Affymetrix Inc., which contains 22216 probe sets, analyzing the expression 
level of 18400 transcripts and variants, including 14500 well-characterized genes. 
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Fig. 1. The static modeling captures the relation (inverse correlation) between A1 and A2 

(profile A) and between B1 and B1 (profile B). However, it does not capture the relation between 
A and B describing profile A at time t+1. This relation is only captured by the dynamic model.  

3   Genetic Network Construction  

We have applied both static and dynamic models to the set of data just described. As 
said in Section 1, clustering techniques are widely applied for static genetic network, so 
we have used a classic clustering algorithm based on Euclidean distance, the K-means 
(Duda and Hart, 1973) which is a very popular clustering algorithm widely used with 
data from microarray experiments (Guiller et al., 2006). Two dynamic methods have 
been applied as well: a Boolean method, described in (D’onia et al., 2003) and 
implemented in (Velarde, 2006) and a graphic Gaussian method (GGM) (Schäfer and 
Strimmer, 2005). These two methods have been chosen as representation of discrete and 
continuous models respectively, the two big families in which dynamic models can be 
divided (van Someren et al., 2002). We now describe each of these methods.  

Classification of gene expression patterns to explore shared functions and 
regulation can be accomplished using clustering methods (D’haeseleer et al., 2000). 
We have applied a classic clustering algorithm based on Euclidean distance, the K-
means algorithm (Duda and Hart, 1973). The number of resulting clusters k is 
estimated by application of the Davies-Bouldin validity index (Davies and Bouldin, 
1979). The groupings obtained using this method, i.e., gene expression profiles, are 
expected to be functionally cohesive since genes sharing the same expression profiles 
are likely to be involved in the same regulatory process (D’haeseleer et al., 2000). 
This can be proved applying the EMO-CC algorithm (Romero-Záliz et al., 2006), 
which validates the gene groupings obtained using external information from the 
Gene Ontology database, which provides a controlled vocabulary to describe gene 
and gene product attributes in any organism (Ashburner et al., 2000).  

3.1   Dynamic Discrete Modeling : Boolean Networks 

A Boolean network is composed by a set of nodes n which represent genes, proteins or 
other biochemical entities. These nodes can take on/off values. The net is determined 
by a set of at maximum n Boolean functions, each of them having the state of k 
specific nodes as input, where k depends on each node. Therefore, each node has its 
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own Boolean function which determines the next state based on the actual state of the 
input nodes. The changes in the net are assumed to occur at discrete time intervals. 

The algorithm applied to build the Boolean network with our data is the 
GeneYapay (D’Onia et al., 2003). It performs an exhaustive search of Boolean 
functions over the data, where a number of nodes, less or equal then k, univocally 
determines the output of some other gene. All possible subsets of 1, 2, ..., k elements 
are visited calculating the number of inconsistencies of the Boolean functions in 
relation to the output value of each gene. The algorithm stops the search for each node 
when a subset of nodes is found which defines the expression profile. The 
implementation applied (Velarde, 2006) only uses the NAND function since all other 
Boolean function -AND, OR, NOT- can be expressed using NAND (see Table 1). 

Table 1. Boolean functions obtained only using the NAND function 

NOT A ≡ A NAND A 
A AND B ≡ (A NAND B) NAND (A NAND B) 
A OR B ≡ (A NAND A) NAND (B NAND B) 

3.2   Dynamic Continuous Modeling : Graphic Gaussian Network 

The graphical gaussian models were first proposed by Kishino and Waddell (2000) 
for the association structure among genes. GGMs are similar to Bayesian networks in 
that they allow to distinguish direct from indirect interactions (i.e. whether gene A 
acts on gene B directly or through a third gene C). As any graphical model, they also 
provide a notion of conditional independence of two genes. However, in contrast to 
Bayesian networks, GGMs contain only undirected rather than directed edges. This 
makes graphical Gaussian interaction modeling on the one hand conceptually simpler, 
and on the other hand more widely applicable (e.g. there are no problems with 
feedback loops as in Bayesian networks). 

The GGM applied in this work has been developed by Schäfer and Strimmer, 
(2005) and is based on (1) improved (regularized) small-sample point estimates of 
partial correlation, (2) an exact test of edge inclusion with adaptive estimation of the 
degree of freedom and (3) a heuristic network search based on false discovery rate 
multiple testing. 

4   Results 

High-throughput techniques provide great amounts of data that need to be processed 
before being used to build genetic networks up. The first step is the identification of 
genes relevant for the problem under study. We have applied the methodology 
described in Rubio-Escudero et al., (2005): a process based on the meta analysis of 
microarray data. The proliferation of related microarray studies by independent groups, 
and therefore, different methods, has lead to the natural step of combination of results 
(Gosh et al., 2003). Thus, a battery of analysis methods has been applied (Student’s T-
Tests (Li and Wong, 2003), Permutation Tests (Tusher et al., 2001), Analysis of 
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Variance (Park et al., 2003) and Repeated Measures ANOVA (Der and Everitt, 2001)). 
A total of 2155 genes have been identified as relevant for the problem under study. For 
this particular problem the number of genes retrieved is very high compared to other 
microarray experiments, since the problem under study, inflammation and host 
response to injury, is a process that affects the human system in a global manner, hence 
altering the behavior of a large number of genes (Calvano et al., 2005).  

At the view of these, we decide to use the expression profiles of the genes as the 
input for the genetic network building algorithms, since the number of genes involved 
in the problem is unfeasible for both building and analyzing the genetic networks. The 
set of profiles used is the one obtained from the static model applied, the K-means 
algorithm.  

4.1   Static Modeling: K-Means Clustering 

We apply a clustering method, the K-means algorithm, as described in section 3.1. We 
have identified 24 expression profiles (Rubio-Escudero et al., 2005) (see Fig. 2). 
These profiles have been proved as functionally cohesive by application of the EMO-
CC algorithm (Romero-Záliz et al., 2006). For instance, the majority of the genes 
exhibiting profile #22 are related to the inflammatory response (GO:0006954) and are 
annotated as intracellular (GO:0005622). Another sample is profile #16, with genes 
sharing the apoptosis (GO:0006915) and integral to plasma membrane (GO:0005887) 
annotations.  

The functional identification of the 24 profiles resulting from the clustering method 
represents a further analysis of the data behind the identification of the genes relevant 
for the problem.  

4.2   Dynamic Discrete Modeling: Boolean Network  

Boolean building network algorithms use discrete data which take two possible values: 
on or off, i.e., 1 or 0. Therefore, the set of 24 differential profiles obtained in the 
inflammation and host response to injury problem (Calvano et al., 2005) needs to be 
transformed to fit the binary scheme. First of all, each of the profiles will be scaled in 
the [0, 1] interval according to the maximum value scored in the expression level of 
such profile throughout the six time points stored. The individual scaling has been used 
instead of a global one (scaling the 24 profiles according to the global maximum) since 
the profiles fluctuate in different levels of expression. For instance, profile #1 takes 
values between 1224.2 and 1724.4, while profile #24 changes between 13632 and 
16436. If we scaled all values together, the variations between the expression values in 
profile #1 would result to small to be traceable, although they could be significative. In 
Table 2 (A) the expression levels before scaling are shown. 

Once the values are scaled in the [0, 1] interval we have assign them [0-1] values. 
The simplest approach is to establish a threshold value, for instance 0.5, and to set 
each time point value depending whether they are over/under the threshold. The 
obvious problem with this approach is the “border value”, such as 0.45 or 0.55. These 
will be set 0 and 1 respectively, while they are so close to each other that they should 
take the same value. Our approach consists in setting the value based on the  
 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Modeling Genetic Networks: Comparison of Static and Dynamic Models 83 

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

0
50

00
10

00
0

15
00

0
20

00
0

Prof #1

Prof #19

Prof #9

Prof #22

Prof #13

Prof #7

Prof #20

Prof #14

Prof #8

Prof #15

Prof #21

Prof #16

Prof #10

Prof #24Prof #23

Prof #18Prof #17

Prof #11 Prof #12

Prof #6Prof #5Prof #4Prof #3Prof #2

0 5 10 15 20

time

0 5 10 15 20

time

0 5 10 15 20

time

0 5 10 15 20

time

0 5 10 15 20

time

0 5 10 15 20

time

E
xp

re
ss

io
n 

va
lu

es

 

Fig. 2. Set of 24 expression profiles obtained from the inflammation and host response to injury 
problem 

proximity to the expression level in the previous time point, which solves the 
previously described problem and captures the behavior of the profile over time. The 
scheme used to set the values is:    
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where t+1 is the gene value to be set and t is the gene value in the previous time point. 
Table 2 (B) shows the obtained Boolean values for the 24 profiles in our problem.  

The resulting Boolean network is shown in Fig. 3. This net is the result of an 
exhaustive search of Boolean functions over the data which univocally determines the 
output of the other genes. We see that some nodes represent more than one expression 
profile. This is due to the processing the data has to undergo. The scaling of the data  
to the [0, 1] interval, makes profiles at different levels of expression end up sharing a 
common Boolean profile. A sample of this in our particular problem is the one 
represented by profiles #9, #13 and #19. These three expression profiles share similar 
behaviour throughout time at different levels of expression (see Fig. 4). The net shows 
valuable information about relation between profiles. For instance, the relation 
established between profiles #7 and #17 with profiles #3 and #14 is confirmed when 
searching in the KEGG database (Kanehisa et al., 2004), a metabolic pathway 
database. Genes exhibiting profiles #7 and #17 are in the same pathway and regulate 
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Table 2. Continuous and Boolean values obtained for each of the 24 profiles in the data set  

CONTINUOUS VALUES (A) BOOLEAN VALUES (B) 
PROFILES

T0 T2 T4 T6 T9 T24 T0 T2 T4 T6 T9 T24 

#1 1724.4 1316.4 1224.2 1236.9 1327.5 1666 1 0 0 0 0 1 

#2 2546.2 734.44 700.28 737.5 867.44 2107.8 1 0 0 0 0 1 

#3 1108.8 1027.9 2403.2 2376 1843.3 1069.6 0 0 1 1 0 0 

#4 1323.6 2001.9 1089.4 1139.8 1192.7 2230.8 0 1 0 0 0 1 

#5 1933.1 1829.8 1970.5 1983.6 1966.4 1907.5 1 0 1 1 1 1 

#6 3146 1694.2 1669.1 1746.3 1889.8 2872.3 1 0 0 0 0 1 

#7 1265.8 3551.7 3079 2008.1 1656.4 1160.3 0 1 1 0 0 0 

#8 2396.3 2577.6 2721.5 2726.6 2712 2412.9 0 1 1 1 1 0 

#9 1614.2 1619 3756.4 3972.6 3116.5 1676.8 0 0 1 1 1 0 

#10 4844.2 1278.3 1248.4 1316.9 1468.1 4240.1 1 0 0 0 0 1 

#11 2730.3 3351.4 1921.3 2114.9 2146.3 4459.3 0 1 0 0 0 1 

#12 4176 2984.1 2974 3068.7 3265.5 4021.8 1 0 0 0 0 1 

#13 3022.8 2898.1 4262.2 4666.1 4329.1 3150.8 0 0 1 1 1 0 

#14 2117.6 3289.7 7298.8 5871.3 4036.8 2229.4 0 0 1 1 0 0 

#15 7849.5 2328 2297.4 2450 2738.6 7171.7 1 0 0 0 0 1 

#16 4836.6 4220.5 5085.4 5398.3 5356.3 4829.7 1 0 1 1 1 0 

#17 1950.7 9001.6 7946 4268.8 2804 1787.1 0 1 1 0 0 0 

#18 5238.2 5734.5 4445.8 4654.6 4665.7 7584.4 1 0 0 0 0 1 

#19 4935.7 5335.4 9034.5 9171 7858 5285.3 0 0 1 1 1 0 

#20 11615 4161.2 3578.6 3760.8 4149.9 11344 1 0 0 0 0 1 

#21 8358.3 7308.8 7244.2 7652.2 8139.2 8913.8 1 0 0 0 0 1 

#22 15442 7021.5 5798.9 5918.8 6632.3 15605 1 0 0 0 0 1 

#23 10473 10132 11396 11871 11531 10980 0 0 1 1 1 1 

#24 16095 13749 13632 14364 13741 16436 1 0 0 1 0 1 

P# 9,13,19

P# 3,14

P# 16

P# 4,11

P# 24

P# 5

P# 23
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P# 7,17

NOT

NAND 
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operators

NAND 
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Fig. 3. Genetic network obtained using the Boolean model. The round nodes represent the gene  
expression profiles (groups of genes with a common behavior) and the diamond shape nodes 
represent the Boolean function based on the NAND operator. Note that some nodes represent 
more than one expression profile.  
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Fig. 4. Profiles at different levels of expression but sharing a common behavior throughout 
time share the same Boolean profile  

genes exhibiting profile #14 (See Fig. 5). That is the case of gene IL1RN (prof. #17, 
Interleukin-1 receptor antagonist protein precursor), related to the immune response 
(GO:0006955) and gene IL1R2 (prof. #14, Interleukin-1 receptor type II), also related 
to the immune response. We can see in Fig. 5(A) more examples of gene relations 
found in KEGG and present in the Boolean network obtained.  

4.3   Dynamic Continuous Modeling: Graphical Gaussian Model 

We have applied a Graphic Gaussian algorithm (Schäfer and Strimmer, 2005), which 
takes as input continuous data that can be in longitudinal format (Opgen-Rhein and 
Strimmer, 2006), very convenient for microarray time course experiments since it 
deals with repeated measurements, irregular sampling, and unequal temporal spacing 
of the time points. To select the edges, and thus the nodes, we have used the local 
false discovery rate (fdr) (expected proportion of false positives among the proposed 
edges), an empirical Bayes estimator of the false discovery rate (Efron, 2005). An 
edge is considered present or significant if its local fdr is smaller than 0.2 (Efron, 
2005). Three independent networks are found (see Fig. 6). Network (B) confirms the 
information provided by the Boolean network about profiles #7, #14 and #17. In 
network (A) there is a relation established between profiles  #11, #23 and #16 that is 
confirmed when searching in the KEGG database (see Fig. 5(B)). That is the case of 
gene RACK (Reversion-inducing cysteine-rich protein with Kazal motifs), which 
exhibits profile #11 and is related to gene MMP9 (Matrix metalloproteinase-9), which 
exhibits profile #23. Both genes are related to the inflammation problem. Another 
relation is found between a gene exhibiting profile #23, CEBPB (CCAAT/enhancer-
binding protein beta), related to the immune response (GO:0006955) and to the;  
inflammatory response (GO:0006954) and a gene exhibiting profile #16, CASP1 
(Caspase-1) related to apoptosis (GO:0006915). 
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Fig. 5. Gene relations detected by the network building algorithms and confirmed in the KEGG 
database. (A) has been found by both the Boolean algorithms and GGM while (B) has only 
been found by GGM. The genes regulate other genes with the same color. 
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5   Discussion  

We have applied both static and dynamic methods for the analysis of a data set 
derived from the inflammation and the host response to injury (Calvano et al., 2005). 
The static method has been the K-means clustering algorithm, and the dynamic 
methods have been a discrete one, Boolean model described in (D’Onia et al., 2003) 
and implemented by (Velarde, 2006) , and a continuous one, Graphic Gaussian Model 
developed by (Schäfer and Strimmer, 2005). We have already described some of the 
findings these methods have made on the dataset: the static method is capable of 
grouping the genes based on their behaviour throughout time and these groupings are 
cohesive in biological functionality. The dynamic models provide temporal relations 
between the genes, or in this case, between the profiles they exhibit, organizing them 
in regulatory networks that are validated using the KEGG database. These temporal 
relations would not have been found only applying static models.  

When comparing the two dynamic models, we see that they cross-validate in 
general their results i.e., the profiles involved and the relations between those profiles 
are concordant with one another. The Boolean algorithm and GGM show different 
and complementary information about the problem under study. In a GGM network 
the relation between nodes is based on the levels of correlation but the time 
dependency is not so clearly pointed out as in Boolean networks. For instance, in our 
GGM net we see that profiles #5, #8 and #23 are related since they are in the same 
subnet, but the Boolean network specifically describes the behavior of those profiles: 
#8 determines the behavior of both #5 and #23 (see Fig. 7), since the behavior shown 
by profile #8 is shifted over time in profiles #5 and #23. This kind of information is 
only available in network models which strongly stress the temporal dependencies, as 
it is the case with Boolean networks. 

However, Boolean algorithms lack the capacity to distinguish among expression 
profiles with similar behaviour throughout time at different levels of expression (see 
Fig. 4). For instance, the Boolean algorithm considers profiles #9, #13 and #19 as 
only one node. GGM uses continuous values solving this problem and taking 
advantage of the diversity or the data, but it misses some information. The network 
(C) provided by GGM covers profiles #20 and #22. In the Boolean network they are 
considered as one single profile along with #21, since their Boolean representation is 
the same. GGM has not been able to capture the similarity between these three 
profiles, only between two of them, #20 and #22. However, the Boolean model 
considers them as the same node, so any temporal relation between them is 
impossible to capture. In fact, when searching in KEGG (Kanehisa et al., 2004), we 
see that one of the genes that exhibit profile #20 is NFKB2 (nuclear factor of kappa 
light polypeptide gene enhancer in B-cells 2) and one of the genes exhibiting profile 
#22 is TNIP1 (TNFAIP3-interacting protein 1). When searching for information about 
these two genes, which are related in their behavior, we see they are also functionally 
related since TNIP1 interacts with zinc finger protein A20/TNFAIP3 and inhibits 
TNF-induced NF-kappa-B-dependent gene expression (NFKB2). This valuable 
information is only prone to be found with network models such as GGM which 
permit the representation of temporal dependencies among strongly correlated 
profiles.  
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Fig. 7. Time relations found by the Boolean algorithm. Profile #8 determines the behavior of 
profiles #6 and #23. 

The evaluation of static and dynamic models over the inflarmmation and host 
response to injury problem allows us to conclude that static models provide very 
valuable information but a step further is needed to get a deeper knowledge of the 
problem under study. Dynamic models provide information of the temporal 
dependencies in the data what is very valuable especially for time-course 
experiments, which are becoming very popular used in biomedical research. Dynamic 
discrete models miss valuable information when discretizing the data, while the 
continuous models do not suffer this problem. However, dynamic continuous models 
are not capable to find some of the dependencies that discrete model discover and 
vice versa. Therefore, they are complementary methods and it is a recommendable 
practice to apply both models to extract the maximum information possible from 
experiments.   
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Abstract. Classification of microarray data requires the selection of
subsets of relevant genes in order to achieve good classification perfor-
mance. This article presents a genetic embedded approach that performs
the selection task for a SVM classifier. The main feature of the proposed
approach concerns the highly specialized crossover and mutation oper-
ators that take into account gene ranking information provided by the
SVM classifier. The effectiveness of our approach is assessed using three
well-known benchmark data sets from the literature, showing highly com-
petitive results.

Keywords: Microarray gene expression, Feature selection, Genetic Al-
gorithms, Support vector machines.

1 Introduction

Recent advances in DNA microarray technologies enable to consider molecular
cancer diagnosis based on gene expression. Classification of tissue samples from
gene expression levels aims to distinguish between normal and tumor samples,
or to recognize particular kinds of tumors [9,2]. Gene expression levels are ob-
tained by cDNA microarrays and high density oligonucleotide chips, that allow
to monitor and measure simultaneously gene expressions for thousands of genes
in a sample. So, data that are currently available in this field concern a very large
number of variables (thousands of gene expressions) relative to a small number of
observations (typically under one hundred samples). This characteristic, known
as the ”curse of dimensionality”, is a difficult problem for classification methods
and requires special techniques to reduce the data dimensionality in order to
obtain reliable predictive results.

Feature selection aims at selecting a (small) subset of informative features
from the initial data in order to obtain high classification accuracy [11]. In the
literature there are two main approaches to solve this problem: the filter ap-
proach and the wrapper approach [11]. In the filter approach, feature selection
is performed without taking into account the classification algorithm that will
be applied to the selected features. So a filter algorithm generally relies on a
relevance measure that evaluates the importance of each feature for the classi-
fication task. A feasible approach to filter selection is to rank all the features
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according to their interestingness for the classification problem and to select the
top ranked features. The feature score can be obtained independently for each
feature, as it is done in [9] which relies on correlation coefficients between the
class and each feature. The drawback of such a method is to score each feature
independently while ignoring the relations between the features.

In contrast, the wrapper approach selects a subset of features that is ”opti-
mized” by a given classification algorithm, e.g. a SVM classifier [5]. The clas-
sification algorithm, that is considered as a black box, is run many times on
different candidate subsets, and each time, the quality of the candidate subset
is evaluated by the performance of the classification algorithm trained on this
subset. The wrapper approach conducts thus a search in the space of candidate
subsets. For this search problem, genetic algorithms have been used in a number
of studies [15,14,6,4].

More recently, the literature also introduced embedded methods for feature
selection. Similar to wrapper methods, embedded methods carry out feature
selection as a part of the training process, so the learning algorithm is no more a
simple black box. One example of an embedded method is proposed in [10] with
recursive feature elimination using SVM (SVM-RFE).

In this paper, we present a novel embedded approach for gene selection and
classification which is composed of two main phases. For a given data set, we
carry out first a pre-selection of genes based on filtering criteria, leading to a
reduced gene subset space. This reduced space is then searched to identify even
smaller subsets of predictive genes which are able to classify with high accuracy
new samples. This search task is ensured by a specialized Genetic Algorithm
which uses (among other things) a SVM classifier to evaluate the fitness of the
candidate gene subsets and problem specific genetic operators. Using SVM to
evaluate the fitness of the individuals (gene subsets) is not a new idea. Our
main contribution consists in the design of semantically meaningful crossover
and mutation operators which are fully based on useful ranking information
provided by the SVM classifier. As we show in the experimentation section, this
approach allows us to obtain highly competitive results on three well-known data
sets.

In the next Section, we recall three existing filtering criteria that are used
in our pre-selection phase and SVM that is used in our GA. In Section 3, we
describe our specialized GA for gene selection and classification. Experimental
results and comparisons are presented in Section 4 before conclusions are given
in Section 5.

2 Basic Concepts

2.1 Filtering Criteria for Pre-selection

As explained above, microarray data generally concern several thousands of gene
expressions. It is thus necessary to pre-select a smaller number of genes before
applying other search methods. This pre-selection can be performed by using
simply a classical filter method that we recall in this section. The following
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filtering or relevance criteria assign to each gene a numerical weight that is used
to rank all the genes and then to select top ranked genes.

In the rest of the paper, we shall use the following notations. The matrix of
gene expression is denoted by D = {(Xi, yi) | i = 1, ..., n}, where each (Xi, yi)
is a labeled sample. The labels y1, ..., yn are taken from a set of labels Y which
represent the different classes (for a two class problem Y = {−1, 1}). Each
Xi = {xi,1, ..., xi,d} describes the expression values of the d genes for sample i.

The BW ratio, introduced by Dudoit et al. [7], is the ratio of between-group
to within-group sums of squares. For a gene j, the ratio is formally defined by:

BW (j) =
∑

i

∑
k I(yi = k)(x̄kj − x̄j)2∑

i

∑
k I(yi = k)(xij − x̄kj)2

(1)

where I(.) denotes the indicator function, equaling 1 if the condition in parenthe-
ses is true, and 0 otherwise. x̄j and x̄kj denote respectively the average expression
level of the gene j across all samples and across samples belonging to class k
only.

The Correlation between a gene and a class distinction, proposed by
Golub et al. [9], is defined as follows.

P (j) =
x̄1j − x̄2j

s1j + s2j
(2)

where x̄1j ,s1j and x̄2j ,s2j denote the mean and standard deviation of the gene
expression values of gene j for the samples in class 1 and class 2. This measure
identifies for a two-class problem informative genes based on their correlation
with the class distinction and emphasizes the signal-to-noise ratio by using the
gene as a predictor. P (j) reflects the difference between the classes relative to the
standard deviation within the classes. Large values of |P (j)| indicate a strong
correlation between the gene expression and the class distinction.

The Fisher’s discriminant criterion [8] is defined by:

P (j) =
(x̄1j − x̄2j)2

((s1j)2 + (s2j)2)
(3)

where x̄1j , (s1j)2 and x̄2j , (s2j)2 denote respectively the mean and variance of
the gene expression values of gene j across the class 1 and across the class 2.
It gives higher values to features whose means differ greatly between the two
classes, relative to their variances.

Any of the above criteria can be used to select a subset Gp of p top ranked
genes. In our case, we shall compare, in Section 4, these three criteria and retain
the best one to be combined with our genetic embedded approach for gene
selection and classification.

2.2 Support Vector Machines (SVMs) and Feature Ranking

In our genetic embedded approach, a SVM classifier is used to evaluate the
fitness of a given candidate gene subset. Let us recall briefly the basic concept of
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SVM. For a given training set of labeled samples, SVM determines an optimal
hyperplane that divides the positively and the negative labeled samples with the
maximum margin of separation.

Formally, given a training set belonging to two classes, {Xi, yi} where {Xi}
are the n training samples with their class labels yi, a soft-margin linear SVM
classifier aims at solving the following optimization problem:

min
w,b,ξi

1
2

‖w‖2 + C

n∑

i=1

ξi (4)

subject to yi (w · Xi + b) ≥ 1 − ξi and ξi ≥ 0, i = 1, ..., n.
C is a given penalty term that controls the cost of misclassification errors.
To solve the optimization problem, it is convenient to consider the dual for-

mulation [5]:

min
αi

1
2

n∑

i=1

n∑

l=1

αiαlyiylXi · Xl −
n∑

i=1

αi (5)

subject to
∑n

i=1 yiαi = 0 and 0 ≤ αi ≤ C.
The decision function for the linear SVM classifier with input vector X is

given by f(X) = w · X + b with w =
∑n

i=1 αiyiXi and b = yi − w · Xi.
The weight vector w is a linear combination of training samples. Most weights

αi are zero. The training samples with non-zero weights are support vectors.
In order to select informative genes, the orientation of the separating hyper-

plane found by a linear SVM can be used, see [10]. If the plane is orthogonal
to a particular gene dimension, then that gene is informative, and vice versa.
Specially, given a SVM with weight vector w the ranking coefficient vector c is
given by:

∀i, ci = (wi)
2 (6)

For our classification task, we will use such a linear SVM classifier with our
genetic algorithm which is presented in the next section. Finally, let us men-
tion that SVM has been successfully used for gene selection and classification
[16,17,10,13].

3 Gene Selection and Classification by GA

As explained in the introduction, our genetic embedded approach begins with
a filtering based pre-selection, leading to a gene subset Gp of p genes (typically
with p < 100). From this reduced subset, we will determine an even smaller set
of the most informative genes (typically < 10) which allows to give the highest
classification accuracy. To achieve this goal, we developed a highly specialized
Genetic Algorithm which integrates, in its genetic operators, specific knowledges
on our gene selection and classification problem and uses a SVM classifier as one
key element of its fitness function. In what follows, we present the different el-
ements of this GA, focusing on the most important and original ingredients:
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problem encoding, SVM based fitness evaluation, specialized crossover and mu-
tation operators.

3.1 Problem Encoding

An individual I = < Ix, Iy > is composed of two parts Ix and Iy called respec-
tively gene subset vector and ranking coefficient vector. The first part, Ix, is a
binary vector of fixed length p. Each bit Ix

i (i = 1...p) corresponds to a particular
gene and indicates whether or not the gene is selected. The second part, Iy, is a
positive real vector of fixed length p and corresponds to the ranking coefficient
vector c (Equation 6) of the linear SVM classifier. Iy indicates thus for each
selected gene the importance of this gene for the SVM classifier.

Therefore, an individual represents a candidate subset of genes with addi-
tional information on each selected gene with respect to the SVM classifier. The
gene subset vector of an individual will be evaluated by a linear SVM classi-
fier while the ranking coefficients obtained during this evaluation provide useful
information for our specialized crossover and mutation operators.

3.2 SVM Based Fitness Evaluation

Given an individual I = < Ix, Iy >, the gene subset part Ix, is evaluated by
two criteria: the classification accuracy obtained with the linear SVM classifier
trained on this subset and the number of genes contained in this subset. More
formally, the fitness function is defined as follows:

f (I) =
CASV M(Ix) +

(
1 − |Ix|

p

)

2
(7)

The first term of the fitness function (CASV M (Ix)) is the classification ac-
curacy measured by the SVM classifier via 10-fold cross-validation. The second
term ensures that for two gene subsets having an equal classification accuracy,
the smaller one is preferred.

For a given individual I, this fitness function leads to a positive real fitness
value f(I) (higher values are better). At the same time, the c vector obtained
from the SVM classifier is calculated and copied in Iy which is later used by the
crossover and mutation operators.

3.3 Specialized Crossover Operator

Crossover is one of the key evolution operators for any effective GA and needs
a particularly careful design. For our search problem, we want to obtain small
subsets of selected genes with a high classification accuracy. Going with this
goal, we have designed a highly specialized crossover operator which is based
on the following two fundamental principles: 1) to conserve the genes shared by
both parents and 2) to preserve ”high quality” genes from each parent even if
they are not shared by both parents. The notion of ”quality” of a gene here is
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defined by the corresponding ranking coefficient in c. Notice that applying the
first principle will have as main effect of getting smaller and smaller gene subsets
while applying the second principle allows us to keep up good genes along the
search process.

More precisely, let I =< Ix, Iy > and J =< Jx, Jy > be two selected indi-
viduals (parents), we combine I and J to obtain a single child K =< Kx, Ky >
by carrying out the following steps:

1. We use the boolean logic AND operator (⊗) to extract the subset of genes
shared by both parents and arrange them in an intermediary gene subset
vector F .

F = Ix ⊗ Jx

2. For the subset of genes obtained from the first step, we extract the maximum
coefficients maxI and maxJ accordingly from their original ranking vectors
Iy and Jy.

maxI = max {Iy
i | i such that Fi = 1}

and
maxJ = max {Jy

i | i such that Fi = 1}
3. This step aims to transmit high quality genes from each parent I and J

which are not retained by the logic AND operator in the first step. These
are genes with a ranking coefficient greater than maxI and maxJ . The genes
selected from I and J are stored in two intermediary vectors AI and AJ

AIi =
{

1 if Ix
i = 1 and Fi = 0 and Iy

i > maxI

0 otherwise

and

AJi =
{

1 if Jx
i = 1 and Fi = 0 and Jy

i > maxJ

0 otherwise

4. The gene subset vector Kx of the offspring K is then obtained by grouping
all the genes of F , AI and AJ using the logical ”OR” operator (⊕).

Kx = F ⊕ AI ⊕ AJ

The ranking coefficient vector Ky will be filled up when the individual K is
evaluated by the SVM based fitness function.

3.4 Specialized Mutation Operator

As for the above crossover operator, we design a mutation operator which is
semantically meaningful with respect to our gene selection and classification
problem. The basic idea is to eliminate some ”mediocre” genes and at the same
time introduce randomly other genes to keep some degree of diversity in the GA
population.

Given an individual I = < Ix, Iy >, applying the mutation operator to I
consists in carrying out the following steps.
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1. The first step calculates the average ranking coefficient of a gene in the
individual I.

c̄ =
∑p

k=1 Iy
k

p

2. The second step eliminates (with a probability) ”mediocre” genes (i.e. in-
ferior to the average) and for each deleted gene introduces randomly a new
gene. ∀Ix

i = 1 and Iy
i < c̄ (i = 1...p), mutate Ix

i with probability pm. If a
mutation does occur, take randomly a Ix

j such that Ix
j =0 and set Ix

j to 1.

3.5 The General GA and Its Other Components

An initial population P is randomly generated such that the number of genes
by each individual varies between p and p/2 genes. From this population, the
fitness of each individual I is evaluated using the function defined by the formula
7. The ranking coefficient vector c of the SVM classifier is then copied to Iy.

To obtain a new population, a temporary population P ′ is used. To fill up
P ′, the top 40% individuals of P are first copied to P ′ (elitism). The rest of
P ′ is completed with individuals obtained by crossover and mutation. Precisely,
Stochastic Universal Selection is applied to P to generate a pool of |P | candi-
dat individuals. From this pool, crossover is applied 0.4 ∗ |P | times to pairs of
randomly taken individuals, each new resulting individual being inserted in P ′.
Similarly, mutation is applied 0.2 ∗ |P | times to randomly taken individuals to
fill up P ′. Once P ′ is filled up, it replaces P to become the current population.
The GA stops when a fixed number of generations is reached.

4 Experimental Results

4.1 Data Sets

We applied our approach on three well-known data sets that concern leukemia,
colon cancer and lymphoma.

The leukemia data set consists of 72 tissue samples, each with 7129 gene
expression values. The samples include 47 acute lymphoblastic leukemia (ALL)
and 25 acute myeloid leukemia (AML). The original data are divided into a
training set of 38 samples and a test set of 34 samples. The data were produced
from Affymetrix gene chips. The data set was first used in [9] and is available at
http://www-genome.wi.mit.edu/cancer/.

The colon cancer data set contains 62 tissue samples, each with 2000 gene
expression values. The tissue samples include 22 normal and 40 colon cancer
cases. The data set is available at http://www.molbio.princeton.edu/colondata
and was first studied in [2].

The lymphoma data set is based on 4096 variables describing 96 observa-
tions (62 and 34 of which are respectively considered as abnormal and normal).
The data set was first analyzed in [1]. This data set has already been used for
benchmarking feature selection algorithms, for instance in [17,16]. The data set
is available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/.
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Prior to running our method, we apply a linear normalization procedure to
each data set to transform the gene expressions to mean value 0 and standard
deviation 1.

4.2 Experimentation Setup

The following sub-sections present and analyze the different experiments that
we carried out in order to compare our approach with other selection methods.
We present here the general context that we adopt for our experimentations.

Accuracy evaluation is realized by cross validation, as it is commonly done
when few samples are available. To avoid the problem of selection bias that is
pointed out in [3] and following the protocol suggested in the same study, we
use a cross-validation process that is external to the selection process. At each
iteration, the data set is split into two subsets, a training set and a test set.
Our method of selection is applied on the training set and the accuracy of the
classifier is evaluated on the test set (which is not used in the selection process).
50 independent runs are performed, with a new split of the data into a training
set and a test set each time. We report in the following the average results
(accuracy, number of genes) obtained on these 50 runs. This experimental setup
is used in many other works, even if the number of runs may be different. Let
us note that our GA also requires an internal cross-validation to estimate the
classifier accuracy during the selection process [11].

For the genetic algorithm, both the population size and the number of gen-
erations are fixed at 100 for all the experimentations presented in this section.
The crossover and mutation operators are applied as explained in Section 3.5.

4.3 Comparison of Pre-selection Criteria

The first experiment aims to determine the best filtering criterion that will be
used in our pre-selection phase to obtain an initial and reduced gene subset Gp.
To compare the three criteria presented in Section 2, we apply each criterion to
each data set to pre-select the p top ranked genes and then we apply our genetic
algorithm to these p genes to seek the most informative ones. We experiment
with different values of p (p=50. . . 150) and we observe that large values of p
does not affect greatly the classification accuracy, but necessarily increase the
computation times. So we decide to pre-select p=50 genes.

In order to compare the three filtering criteria, we report in Table 1 the final
number of selected genes, the classification accuracy evaluated on the training
set and on the test set. From Table 1, one observes that the best results are
obtained with the BW ratio measure. Therefore our following experiments are
carried out with the BW ratio criterion and the number p of pre-selected genes
is always fixed at 50.

4.4 Comparison with Other Selection Methods

In this section, we show two comparative studies. The first compares our method
with two well known SVM based selection approaches reported in [16,17]. We
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Table 1. Comparison of three pre-selection criteria. NG is the mean and standard
deviation of the number of selected genes, AcTr (resp. AcTe) is the average classification
rate (%) on training set (resp. on test set).

BW ratio criteria Correlation criteria Fisher’s Criterion
Dataset NG AcTr AcTe NG AcTr AcTe NG AcTr AcTe

Leukemia 3.93±1.16 98.27 89.05 5.07±1.98 94.40 85.59 4.71±1.44 96.59 86.95
Colon 8.05±1.57 90.62 78.81 10.43±2.77 85.47 76.32 9.17±2.03 87.16 76.59
Lymphoma 5.96±1.31 96.53 88.27 8.01±1.94 92.90 84.47 7.13±1.86 93.82 86.02

also carry out a comparison with two highly effective GA-based gene selection ap-
proaches [12,14]. Unlike some other studies, these studies are based on the same
experimental protocol as ours that avoids the selection bias problem pointed out
in [3].

Comparison with SVM-Based Selection Approaches. In [16], the author
reports an experimental evaluation of several SVM-based selection methods. For
comparison purpose, we adopt the same experimental methodology. In particu-
lar, we fix the number of selected genes and adapt our GA to this constraint (the
fitness is then determined directly by the classification accuracy of the classifier,
c.f. Equation 7). In Table 2, we report the classification accuracies when the
number of genes is fixed at 20 and we compare the best results reported in [16]
and our results for the data sets concerning the colon cancer and the lymphoma
([16] does not give information about the leukemia data set).

In [17], the authors propose a method for feature selection using the zero-
norm (Approximation of the zero-norm Minimization, AROM), and also gives
results concerning the colon and lymphoma data sets that we report in Table 2.

Table 2. A comparison of SVM-based selection methods and our method. The columns
indicate: the mean and standard deviation of classification rates on test set (Ac), the
number of trials (NT), and the number of samples in the test set (NSa).

[17] [16] Our method
Dataset Ac (%) NT NSa Ac (%) NT NSa Ac (%) NT NSa

Colon 85.83 ±2.0 30 12 82.33 ±9 100 12 82.52 ±8.68 50 12
Lymphoma 91.57 ±0.9 30 12 92.28 ±4 100 36 93.05 ±2.85 50 36

From Table 2, one observes that for the lymphoma data set, our method
obtains a better classification accuracy (higher is better). For the colon data set,
our result is between the two reference methods. Notice that in this experiment
we restrict our method since the number of selected genes is arbitrarily fixed
while our method is able to select dynamically subsets of informative genes.
The following comparison provides a more interesting experimentation where
the number of genes will be determined by the genetic search.
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Comparison with Other Genetic Approaches. In [12], the authors propose
a multiobjective evolutionary algorithm (MOEA), where the fitness function
evaluates simultaneously the misclassification rate of the classifier, the difference
in error rate among classes and the number of selected genes. The classifier used
in this work was the weighted voting classifier proposed by [9].

In [14], the authors present a probabilistic model building genetic algorithm
(PMBGA) as a gene selection algorithm. The Naive-Bayes classifier and the
weighted voting classifier are used to evaluate the selection method in a Leave-
One-Out-Cross-Validation process.

Table 3 shows our results on the three data sets together with those reported
in [12] and [14]. One can observe that our method gives better results than [12],
in the sense that the number of selected genes is smaller and the accuracy is
higher. Concerning [14], our results are quite comparable.

Table 3. Comparison of other genetic approaches and our method. The columns in-
dicate: the mean and standard deviation of the number of selected genes (NG), the
mean and standard deviation of classification rates on test set (Ac). We also report the
number (in two cases) or the percentage of samples that form the test set (NSa) for
the experiments.

[12] [14] Our method
Dataset NG Ac (%) NSa NG Ac (%) NSa NG Ac (%) NSa

Leukemia 15.2±4.54 90 ±7.0 30% 3.16±1.00 90 ±6 34 3.17±1.16 91.5 ±5.9 34
Colon 11.4±4.27 80 ±8.3 30% 4.44±1.74 81 ±8 50% 7.05±1.07 84.6 ±6.6 50%
Lymphoma 12.9±4.40 90 ±3.4 30% 4.42±2.46 93 ±4 50% 5.29±1.31 93.3 ±3.1 50%

We must mention that we report the average results obtained by a 10-fold
cross validation, but we observe that in some experiments, our method achieves a
perfect classification (100% accuracy). Finally, let us comment that these results
are comparable to those reported in [6] and better than those of [15].

5 Conclusions and Future Work

In this paper, we have presented a genetic embedded method for gene selection
and classification of Microarray data. The proposed method is composed of a
pre-selection phase according to a filtering criterion and a genetic search phase
to determine the best gene subset for classification. While the pre-selection phase
is conventional, our genetic algorithm is characterized by its highly specialized
crossover and mutation operators. Indeed, these genetic operators are designed
in such a way that they integrate gene ranking information provided by the
SVM classifier during the fitness evaluation process. In particular, the crossover
operator not only conserves the genes shared by both parents but also uses SVM
ranking information to preserve highly ranked genes even if they are not shared
by the parents. Similarly, the gene ranking information is incorporated into the
mutation operator to eliminate ”mediocre” genes.
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Using an experimental protocol that avoids the selection bias problem, our
method is experimentally assessed on three well-known data sets (colon, leukemia
and lymphoma) and compared with several state of the art gene selection and
classification algorithms. The experimental results show that our method com-
petes very favorably with the reference methods in terms of the classification
accuracy and the number of selected genes.

This study confirms once again that genetic algorithms constitute a general
and valuable approach for gene selection and classification of microarray data. Its
effectiveness depends strongly on how semantic information of the given problem
is integrated in its genetic operators such as crossover and mutation. The role
of an appropriate fitness function should not be underestimated. Finally, it is
clear that the genetic approach can favorably be combined with other ranking
and classification methods.

Our ongoing works include experimentations of the proposed method on more
data sets, studies of alternative fitness functions and searches for other semantic
information that can be used in the design of new genetic operators.
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Abstract. Understanding the self-regulatory mechanisms controlling
the spatial and temporal structure of multicellular organisms represents
one of the major challenges in molecular biology. In the context of plants,
shoot apical meristems (SAMs), which are populations of dividing, undif-
ferentiated cells that generate organs at the tips of stems and branches
throughout the life of a plant, are of particular interest and currently
studied intensively. Here, one key goal is to identify the genetic regu-
latory network organizing the structure of a SAM and generating the
corresponding spatial gene expression patterns.

This paper addresses one step in the design of SAM models based on
ordinary differential equations (ODEs): parameter estimation for spatial
pattern formation. We assume that the topology of the genetic regula-
tory network is given, while the parameters of an ODE system need to
be determined such that a particular stable pattern over the SAM cell
population emerges. To this end, we propose an evolutionary algorithm-
based approach and investigate different ways to improve the efficiency of
the search process. Preliminary results are presented for the Brusselator,
a well-known reaction-diffusion system.

1 Motivation

Ordinary differential equations (ODEs) represent a common approach to model
genetic regulatory networks [1]. Such models are on the one hand used to quan-
titatively understand the interactions of multiple genes controlling specific cel-
lular processes and on the other hand applied to make predictions about the cell
behavior. One important and challenging problem in this context is the deter-
mination of the model parameters that lead to the desired temporal dynamics.
For single cell networks, there has been a lot of work on parameter estimation
using analytical as well as heuristic methods [13]; in particular, several studies
make use of evolutionary algorithms to find suitable parameter settings [8,9,11].

This paper considers a slightly different problem where the focus is on mul-
ticellular systems, in particular the shoot apical meristems (SAMs) in the plant
Arabidopsis thaliana. The main goal is to identify an ODE system that is capa-
ble of producing an (experimentally observed) spatial gene expression pattern
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across the cell population, assuming that gene products can cross cell borders
via diffusion. Starting with a given set of gene interactions in terms of an ODE
system, we address the problem of model parameter determination for such a
spatial scenario. In comparison to previous studies on parameter estimation,
there are several differences with respect to the scenario under investigation:

– Instead of a single cell, multiple interacting cells are considered which re-
quires a prespecified spatial cell structure and a cell interaction model;

– Instead of achieving a particular temporal behavior, we are interested in
obtaining a stable, i.e., non-oscillating system state in which a particular
gene expression pattern emerges over the spatial cell structure;

– Instead of considering absolute gene product concentrations as target values,
the gene expression patterns are rather defined qualitatively since quantita-
tive measurements in space are scarcely available.

It is an open question of how to efficiently search for model parameters in such a
scenario and how to formalize spatial patterns in terms of an objective function.

In the following, we present a preliminary study for this problem where a more
general goal is taken as a basis: we do not assume a given target pattern, but
aim at finding parameter settings that produce arbitrary, non-chaotic patterns.
We first propose a general modeling framework which allows to simulate genetic
regulatory networks within multicellular systems. Secondly, for a simple reaction-
diffusion system with two genes that has been part of a previously published
model for the shoot apical meristem by Jönsson et al. [6], we investigate the issue
of parameter estimation. To this end, we introduce and apply an evolutionary
approach based on the Covariance Matrix Adaption Evolution Strategy (CMA-
ES) [3,4] and investigate different ways to improve the efficiency of the search.

2 Background

2.1 The Shoot Apical Meristem (SAM)

A shoot apical meristem (SAM) consists of multiple dividing, undifferentiated
cells and is located at the tips of stems or branches of a plant. It is responsible
for generating organs throughout the life of a plant and determines the number,
type and position of the resulting lateral organs. A SAM has a particular internal
organization that is preserved through its existence and its position at the tip of
the stem or a branch remains fixed, although the plant is growing. Therefore, a
fundamental question in meristem research is what this structure looks like and
how it is maintained.

In various experimental studies, a number of genes and gene interactions have
been identified that are involved in the organization of a SAM. At the heart
of preserving the organization and functioning of a SAM is a negative feed-
back loop with two critical elements, the transcription factor gene WUS and the
CLAVATA (CLV) genes, which encode components of a ligand/receptor complex.
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Fig. 1. A sketch of the SAM summarizing the known structural constituents and show-
ing the WUS-CLV feedback loop. In the middle of the model, the organizing center is
located. Directly on top of this domain the triangular shaped CLV stem cell domain
begins and stretches up to the outermost cell layers L1 and L2. This setup remains
stable throughout the life of the plant. During growth, cells from the CLV stem cell
area move laterally, differentiate and thereby contribute to the plants growth. In regu-
lating the maintenance of this spatial pattern the WUS-CLV feedback loop indicated
by (1) and (2) plays a central role. Starting from the organizing center it promotes its
own growth and the regeneration of the CLV domain (1) which lost cells due to dif-
ferentiation. To prevent the system from over stimulating growth in CLV domain and
organizing center, in turn CLV3 produced in the topmost layers of the CLV domain
(L1, L2) gives negative feedback to the WUS organizing center (2). As a result of this
interplay both, CLV domain and organizing center can maintain a stable size.

This negative-feedback loop elegantly corrects transient aberrations in stem-cell
number. Besides these relatively well-characterized regulators, a range of other
elements has been identified. In many cases their function in the meristem is
unclear and, so far, there is no overall picture of the genetic regulatory networks
in a SAM. Fig. 1 schematically summarizes the main constituents of a SAM that
are currently known.

A current limitation in meristem research is the resolution of the measure-
ments. Ideally, for each gene the gene product concentration within each cell
of the meristem separately would be known, but it is obvious that such type
of measurements are utopian for the near future. For this reason, data-driven
modeling approaches where genetic regulatory networks are inferred from quan-
titative data are currently infeasible. Instead, a knowledge-driven approach is
pursued where the topology of the network is determined by hand based on
previous knowledge, and novel hypotheses are tested by slightly modifying the
existing network and validating it with regard to phenotypic data.
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2.2 Pattern Formation

One approach to study the regulation mechanisms enabling plants to maintain
these spatial SAM patterns is to use reaction-diffusion systems, a well under-
stood system to produce spatial patterns in general, dating back to work by
Turing [12]. He investigated the influence of diffusion as a spatial component on
systems described by coupled non-linear differential equations. In contrast to the
predominant opinion, he found out that systems which converge to a homoge-
neous steady state without diffusion can be perturbed in such a way that they
form either spatially stable patterns over time or temporally stable patterns in
the spatial domain. Using similar systems many pattern forming dynamics in
sea shells [7], development of animals like hydra [2] or drosophila [5] have been
investigated.

In the context of SAM modeling, Jönsson et al. [6] employed reaction-diffusion
systems to simulate the domain formation and maintenance in the SAM. In their
work, the authors used a two dimensional model only considering the WUS-CLV
feedback loop extended by an additional activator substance; the reported results
in simulating phenotypic observations in SAM development and maintenance
are promising. As to model parameter determination, their model consisted only
of few constituents and therefore it was possible to tune the parameters by
hand. Considering the fact that these systems are sensitive to either start condi-
tions and parameters like coupling constants, degradation rates and production
rates, it is likely that tuning more complex models by hand becomes intractable.
Therefore we here present a method which, using a model similar to the one
from Jönsson et al., (1) optimizes parameters of the system in such a way that
spatial patterns are formed and (2) thereby can be used to explore the pattern
formation capabilities of that given setup.

3 A SAM Modeling Framework

In the following, we present a modeling framework for multicellular systems in
general and SAMs in particular that serves two goals: hypothesis testing and
hypothesis exploration. On the one hand, it should be testable whether a given
system of interacting factors can form certain spatial patterns by finding the
necessary parameter settings and simulating the system. On the other hand,
based on the parameter optimization, predictions on the possible patterns of
novel interactions resulting from novel intracellular and intercellular interactions
shall be made.

3.1 Model Structure

The model proposed here is defined by the following core components:

Cells: The model consists of spatially discrete units, the cells. They are used
as autonomous units. We assume that all cells are similar to each other in
design, in particular regarding the underlying genetic regulatory network,
and only differ in their states.
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Gene products: The state of a cell vi is characterized by the concentrations
of the gene products produced in the cell. The gene product concentrations
are represented by a real valued vector. The term ’gene product’ in this case
not only refers the the product but has to be understood synonymous for
gene products, gene expression levels and all processes on the way from gene
to gene product. Since there exists a mapping between expression levels and
the resulting amount of gene products, the gene product concentrations are
representing the gene expression levels.

Cell structure: The cells are grouped according to a spatial neighborhood
defining which cells share common cell surface areas. In this model only a
two dimensional horizontal cut through the SAM is considered. We assume
that the cells are hexagonal and the cell plane is arranged in rings around a
central cell. A schematic picture of the plane is given in Fig. 2. Internally the
cell neighborhood is represented by a graph G(V, E) consisting of a set of
cells V . Contacts or interaction pathways between the cells are represented
by edges ei,j ∈ E between two cells vi and vj .

Cell communication: To form spatial heterogeneous patterns, spatial interac-
tions, namely diffusion, between the constituting components are mandatory.
In this model diffusive interactions are possible along the edges between the
cells. Therefore implicitly zero flux boundary conditions are used on the
boundaries of the cell plane.

The framework is implemented in Java and for the graph representation the
JUNG library is used.

3.2 Model Dynamics

During the simulation process the states of the cells change according to (1)
intracellular interaction between genes or gene products and (2) the intercellular
diffusion. In a formal description the state change of a cell vi follows a transition
function δ(qi, N(vi)) depending on the current state qi of the cell and the states
of its interaction partners given by the neighboring vertices N(vi). Each iteration
in the simulation corresponds to calculating the transitions made for every cell
based on the status quo.

The reaction equations describing the intracellular interactions can easily be
transformed to ordinary differential equations, using the reaction rates from
the reaction equations as parameters. The time course of ODE systems can
be simulated by numerical integration. Since the intracellular interactions are
already represented by ODEs, it is convenient to express the diffusion by ODEs
as well. The used ODE approximation for diffusion is given in Eq. 1,

dxi,j

dt
=

∑

k∈N(vi)

Dj(xk,j − xi,j) (1)

where xi,j is the concentration of gene product j in cell vi, N(vi) encompasses
all cells in contact with vi, and Dj is the diffusion constant for the type of gene
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Fig. 2. Activator inhibitor patterns resulting from the Brusselator reaction-diffusion
system for two different parameter sets on two dimensional cell planes with a hexag-
onal lattice. Each vertex represents a cell, each edge indicates an interaction pathway
between cells. The cells are colored according to the concentrations of a single gene
product. The activator patterns are shown in the left column and the corresponding
inhibitor patterns in the right column. Gene product concentration levels are relative
and range from low (light color) to high (dark color). The first row shows the patterns
simulated using the parameters recorded by Jönsson et al. [6] and the second row shows
patterns resulting from parameter optimization using our framework. The difference
in size of the patches with high activator concentrations between both parameter sets
stems from the difference in the activator diffusion constant DA. For the optimized
parameter set it is smaller and therefore the activator peaks are more local.

product. For our two dimensional meristem simulations, the system is integrated
for 5000 steps using a fourth order Runge Kutta integrator with fixed step size
Δt = 0.1.

Additionally to reaction rates and diffusion constants, the starting conditions
or initial gene product concentrations can be considered as a third group of
parameters. Due to the non-linearity of the considered system, already slight
changes in any of the parameter settings can result in drastic changes in the
system behavior whilst the system can be highly robust with respect to other
variations. To illustrate this fact, in Fig. 3 two simulation runs of a one di-
mensional reaction-diffusion system with slightly varying parameter settings are
shown. This system, namely the Brusselator, was introduced in 1968 by Pri-
gogine and Lefever [10] and ranges among the best studied reaction-diffusion
systems. It is defined by the two equations:
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Fig. 3. Two simulations using the Brusselator activator (solid lines) inhihibitor (dashed
lines) reaction-diffusion system with similar parameters but one. One diffusion constant
(Db) is changed from 0.69 (a) to 0.7 (b) which results in a state change of the system
from spatial homogeneous to spatial heterogeneous waves for both gene products. The
other parameter settings were: a = 0.1, b = 0.2, β = 0.1, c = 0.1, Da = 0.1.

dA

dt
= a − (b + β)A + cA2B + Da∇2A (2)

dB

dt
= bA − cA2B + Db∇2B (3)

3.3 A Clavata-Wuschel Model

As mentioned in Section 2.1, the feedback loop between CLV produced in the L1

layer and WUS produced in the organizing center is one of the key regulation
mechanisms for maintaining a stable SAM. Jönsson et al. [6] simulated this feed-
back loop complemented by a an activator inhibitor reaction-diffusion system.
They decided to use the Brusselator model explained in Sec. 3.2 for this task and
following this suggestion we use the same system for this study. With help of this
system, Jönsson and coworkers were able to reproduce similar pattern formation
for the considered horizontal cut through the SAM when compared to the in
vivo SAM either unperturbed or after laser ablation of the WUS producing or-
ganizing center (cf. Fig. 1). Since in our study we are only interested in pattern
formation in general, we reduce their model to the Brusselator equations.

4 Model Parameter Estimation

This study is concerned with investigating ways to optimize parameters for the
SAM model based on reaction-diffusion systems. The considered optimization
problem can be summarized by the following design parameters:
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– Search space X ⊆ R
n, for the Brusselator n = 6,

– objective space Z = R,
– objective function f(x) : R

n → R evaluating the resulting patterns for the
given parameter set considering the two aspects (1) stability of the pattern
over time and (2) significance of the heterogeneity of the resulting pattern.

In the following, we present two types of objective functions used during op-
timization with the Covariance Matrix Adaption Evolution Strategy (CMA-ES)
developed by Hansen and Ostermeier in 1996 [3,4] – a state of the art stochastic
optimization method already successfully applied to several real valued opti-
mization problems. The first type of objective functions is designed to avoid
using any domain knowledge. Therefore it represents a baseline approach for
optimizing reaction-diffusion systems. Secondly, we consider a set of methods to
incorporate domain knowledge into the objective function in order to improve
the quality of the patterns found.

4.1 Baseline Approach

Method. For the baseline approach we used both spatial heterogeneous gene
product concentration distribution and convergence of the gene product concen-
trations over time and aggregated them into a single objective f(x) as follows:

f(x) =
∑

i∈gp

(max(δt − Δsi , 0) + Δti) , (4)

where gp are all gene products, Δsi is the maximal difference in gene product
i measured over all cells at the end of the simulation and δt is a threshold
value which is used to decide if a given spatial heterogeneity is significant. For
our simulations δt = 0.5 was used. Δti is the largest change in gene product
concentration i in the last integration step. The first term in the fitness function
can be seen as a penalty term on parameter settings that fail to generate a stable
pattern. In effect, the second term penalizes settings for which the simulation
does not converge within the given number of integration steps.

Results. Using the described fitness function we made eleven optimization runs
using the CMA-ES. Due to runtime constraint, one optimization run took up to 4
hours, for each variant only eleven runs were conducted. The used (4, 9)CMA-ES
parameter values are given in Tab. 1 and the results are shown in Fig. 4.

The undertaken optimization runs failed to converge to an optimum within
1000 objective function evaluations. After investigating which parts of the para-
meter space had been explored during the optimization runs, it turned out that
only 3 percent of the tested settings had relations between the activator diffusion
constant Da and the diffusion constant of the inhibitor Db of Da

db
≤ 1

7 . Although
it is known from literature that pattern formation using reaction-diffusion sys-
tems only takes place if for the relation of the diffusion constants Da

db
≤ 1

7 holds,
the idea behind this base approach was to avoid using domain knowledge and
thereby testing the feasibility of our parameter optimization approach on general
ODE systems.
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Table 1. Parameter settings for CMA-ES

Parameter Value

Initial ODE Parameters [a, b, β, c, Da, Db] [0.45, 0.45, 0.45, 0.45, 0.8, 0.8]

Initial Standard deviation [0.25, 0.25, 0.25, 0.25, 0.7, 0.7]
for the Parameters

Maximal Number of Objective function Evaluations 1000

Fig. 4. The results of all conducted runs are shown in boxplots. ’baseline’ refers to
the first variant not incorporating any domain knowledge, ’interval small’ and ’interval
medium’ both refer to the variant were the optimization process operated on a pre-
defined search interval, ’target’ refers to the variant where the domain knowledge was
integrated by guiding the search to the vicinity of a known solution, ’target, emph. on
diff.’ denotes the runs using a target setting with an emphasize on the diffusion relation
and finally ’constraint’ refers to the variant where knowledge about the dependency of
the diffusion constants was used.

4.2 Integration of Domain Knowledge

Method. Considering the difficulties in optimizing the parameters without do-
main knowledge, we decided to include domain knowledge into the optimization
process. We tested three different approaches:

1. Restricting the initial search interval of the CMA to a smaller interval which
is known or suspected to contain good parameter settings,

2. introducing a term pointing to a region that it is known to be good and
thereby generating bias towards this region,

3. constraining the parameters considering known dependencies between para-
meters like the relation between diffusion constants.

The first approach is trying to increase the probability of identifying a good
solution by simply regarding a smaller search space.

Since a study using a sampling grid on the diffusion constants and fixing all
other parameters showed that the fitness landscape for the screened part of the
parameter space consists of mainly two plateaus, a small sink containing the
pattern forming settings and a large plateau of settings for which the system
converges to a spatially homogeneous state (cf. Fig. 5), we introduced the latter
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Fig. 5. Slice of the fitness landscape resulting from the objective function given in
Eq. 4: For this slice only two of the six parameters of the Brusselator reaction-diffusion
system (cp. Eq. 3) are considered, namely the diffusion constants DA and DB . They
were sampled in the interval [0.05, 1.95] using 0.05 steps while the other parameters are
fixed. It can be seen that only for small activator diffusion constants there are pattern
forming sets and therefore for most of the tested settings no pattern formation takes
place. Further on it can be seen that the transition between pattern forming settings
and non-pattern forming settings is ridge like.

two approaches. Both aiming at reshaping the fitness landscapes to become easier
to optimize. By integrating new terms in the fitness function, higher plateaus
are slightly inclined to point at pattern forming parameter regions. The second
approach to this end uses a term penalizing distance to a known promising
region. The resulting objective function reads as follows:

f(x) =

{∑
i∈gp(max(δt − Δsi , 0) + Δti) + ‖x − xt‖ if ‖x − xt‖ > δd,∑
i∈gp(max(δt − Δsi , 0) + Δti) else,

(5)

where xt is the target parameter vector and δd is a minimal length of the differ-
ence vector of x and xt.

The third approach follows a more general idea: It exploits the knowledge
about the necessary relation between the two diffusion constants DA and DB.
Whenever the relation between both constants exceeds a threshold of 0.1, the
actual relation is added to the function value. In effect, the search space is
constraint and the resulting objective function reads as follows:

f(x) =

{∑
i∈gp(max(δt − Δsi , 0) + Δti) + DA

DB
if DA

DB
> 0.1,

∑
i∈gp(max(δt − Δsi , 0) + Δti) else.

(6)

Results. For all mentioned approaches we did eleven optimizations runs each.
Using the two different interval sizes around a parameter set found using the op-
timization framework (a = 0.3, b = 0.05, β = 0.05, c = 0.25, DA = 0.075, DB =
1.525) and σ settings for the corresponding search distribution in the CMA-ES
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of σ ∈ {0.1, 0.3}, for the small σ reproducibly good solutions were found whereas
already for the medium σ the results became significantly worse. Therefore the
successes have to be contributed to the small size of the explored search space
rather than to an effective optimization.

Using the parameter vector (a = 0.1, b = 0.2, β = 0.1, c = 0.1, DA = 0.1, DB =
1.5) as a target vector generating search direction towards a good region in para-
meter space (for the CMA-ES the parameter settings in Tab. 1 were used), the
obtained results were reasonable but still the runs did not converge to a setting
with an objective value below 1 ∗ 10−14, the convergence threshold used by the
CMA-ES. This can be attributed to the fact that by taking the euclidean distance
between the parameter vector describing the desired parameter vector and the ac-
tual parameter vector, all parameters equally contribute to the distance between
the two vectors. Since DA is an important parameter that is measured in smaller
scale than the other parameters, its contribution to the search direction is over-
powered by the others and the generated signal is blurred. And in fact, emphasiz-
ing the diffusion relation improved the convergence.

Coping with this problem brings us to our last approach. Here a desired
minimal relation of DA

DB
= 0.1 is used as a constraint (for the CMA-ES the

parameter settings in Tab. 1 were used). Compared to all other approaches,
it was only outperformed by the approach searching in a small already known
region. Schematic pictures of the resulting patterns are given in Fig. 2. When
again looking at the number of evaluated settings having a suitable diffusion
constant relation, it turned out that for this last setup more than 50 percent
were sufficiently small. The results for all approaches are shown in Fig. 4.

5 Conclusions

In this paper, we have studied the problem of parameter estimation for ODE
models of genetic regulatory networks in order to generate spatial gene expression
patterns over a population of cells. We have tested variants from two types of
objective functions, one abandoning all domain knowledge and three objective
functions integrating domain knowledge in different ways.

Already for small systems like the considered Brusselator with six parameters,
the first approach failed to identify suitable parameter settings. A naive varia-
tion of this method drastically restricting the search space to a region known
to be promising in principle failed as well. Only for very small parts of the de-
cision space it was possible to identify good solutions, indicating that no real
optimization took place but mere sampling.

The last two variants produced promising results. Both have in common that
the search process is guided towards a region of in principle good solutions. Fol-
lowing this direction both approaches succeeded in identifying good parameter
sets. The two variants are (1) using a single point which is known to be good as
an attractor for the search process and (2) using knowledge about dependencies
between parameters to guide the search process, with variant (2) producing the
better results and therefore beeing the method of choice for the given problem.
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Additionally, it might be interesting to combine the used approaches and thereby
further improve the method.

As key results of this study it can be concluded that on the one hand side opti-
mization on the given problem domain without having additional domain knowl-
edge seems to be intractable. If domain knowledge becomes available on the other
hand there are strategies allowing to identify good solutions to the problem.

This study only represents preliminary work. The focus of our work is on
dealing with more complex networks both when considering the number of in-
volved species and the number of cells in the simulated system. Additionally it
is planned to expand the model to three dimensional setups. For these systems
we are not only interested in the mere pattern formation but in the formation
of specific patterns visible in our real world target Arabidopsis thaliana.
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Abstract. A path diagram relates observed, pairwise, variable correlations to a 
functional structure which describes the hypothesized causal relations between 
the variables. Here we combine path diagrams, heuristics and evolutionary 
search into a system which seeks to improve existing gene regulatory models. 
Our evaluation shows that once a correct model has been identified it receives a 
lower prediction error compared to incorrect models, indicating the overall 
feasibility of this approach. However, with smaller samples the observed 
correlations gradually become more misleading, and the evolutionary search 
increasingly converges on suboptimal models. Future work will incorporate 
publicly available sources of experimentally verified biological facts to 
computationally suggest model modifications which might improve the model's 
fitness. 

1   Introduction 

Several algorithms have been proposed and evaluated for the problem of inferring 
gene regulatory networks from observations. For an overview, see (Wessels, van 
Someren et al. 2001). However, the focus has often been on the reconstruction of the 
entire network from scratch. This work investigates a particular combination of path 
analysis (Wright 1934) and evolutionary search for comparison and improvement  of 
existing pathway models of gene regulatory networks. Instead of trying to develop 
algorithms which start from scratch in every new model building effort, we are more 
interested in developing methods which help us analyze existing models in the light of 
new data. Our aim is to develop methods which can automatically check if new data 
rejects a model, or some model features. Such methods could be used for 
continuously monitoring and updating a database of pathways, and alerting users 
when new data arrives which contradicts the models they rely on. Another envisioned 
application is a system that accepts as input a rough model of a set of variables and 
their relations, and proceeds to refine it based on both existing knowledge and new 
observations. Current research on biological ontologies and semantic web technology 
indicates that this is receiving increased attention within the biological sciences 
(Bodenreider and Stevens 2006). 

Regulatory interactions among genes can (to some extent) be represented as 
models in the form of path diagrams, as exemplified in figure 1. A path diagram is a 
directed graph which may contain cycles. A path diagram is also a graphical model 
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describing a theory about causal relationships among measured and unmeasured 
variables (Loehlin 1998). Double-headed arrows represent residual correlations 
between variables and arrows are drawn between variables where one is considered to 
be a function of the other (Wright 1934). Each arrow (single- or double-headed) has 
an attached floating-point value - called a path coefficient - which represents the 
strength of the interaction. 

eC
eD

A

DC

B

 

Fig. 1. A path diagram representing the relations between the measured variables A, C and D and 
the unmeasured variables B, eC and eD. Here A and B are correlated due to some unspecified 
interaction. Variable A influences C and variable B influences both C and D. Variables C and D 
are further influenced by the unspecified and unmeasured, error factors eC and eD. 

The coefficients define a set of model-implied correlation values between any pair 
of variables in the diagram, according to a set of rules defined by (Wright 1934). The 
correlation between any two variables is the sum of the values of all compound paths 
between them. The value of a compound path is the product of the involved 
coefficients. A compound path, according to Wright’s rules, consists of a sequence of 
distinct variables, is formed by doing at most one traversal along a double-headed 
arrow, and includes no backwards traversal after the first forward traversal. In figure 1 
the correlation between C and D is the sum of the compound paths C←A↔B→D and 
C←B→D. The coefficient for B→D is used in both these compound paths, hence it 
must be optimized to fit both. For details on path diagram creation, their usage and 
constraints on their usage, the reader is referred to (Loehlin 1998). 

Using path diagrams, alternative theories can be formulated as alternative models, 
and these can easily be compared to each other as well as to observations on the basis 
of the model-implied correlations. Given sufficient training data the path coefficients 
can be optimized to minimize the differences between the observed correlations and 
the model-implied ones. Our search is using this as a fitness function. 

In contrast, (Bay, Shrager et al. 2003) compare a set of model-implied vanishing 
partial correlations to observations. They do it by trying to improve a regulatory 
network structure by identifying which variables are directly linked, and which are 
indirectly linked to each other. They further restrict their networks to acyclic graphs. 
Once their network structure has stabilized they do a second pass to estimate signs for 
the links between variables. In our approach we do not separate the structure learning 
and path coefficient estimation into separate stages. The result of the path coefficient 
estimation is instead used as a hint for better fitting structures during the construction 
of the next population. Neither is the approach we use restricted to acyclic graphs. 
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Obviously, these comparisons between correlations are quite dependent on the 
quality and quantity of the observations. To further complicate matters, even with a 
model that has a perfect match there is still the possibility of some other model 
matching equally well, despite not representing the same theory (Lee and Hershberger 
1990). That is, there could be an entire set of models which fit the data equally well, 
while representing  incompatible causal claims about the system. In general, the 
amount of statistical error we can calculate does not necessarily correlate very well to 
the amount of causal error that our path diagram models contain (Hayduk 1996). A 
significant statistical error is a very useful and clear sign of model rejection, 
something which needs to be dealt with. However, the converse is not quite as useful. 
Even a small, often insignificant,  statistical error does not prove that the model 
captures the functional relations which would be confirmed in a controlled 
experiment. This is evident from the fact that pairwise statistical correlation does not, 
by itself, imply anything about which of the concerned variables is the effect and 
which is the cause. Thus, it is easy to predict that there will be functional arrows in 
the path diagrams which point in the wrong direction. 

2   Combining Path Analysis with Evolutionary Search 

To test how well the combination of path diagrams and evolutionary search performs, 
we created artificial ”gene expression” data sets based on previously published and a 
(partially) experimentally verified yeast gene regulatory pathway (Yeang, Mak et al. 
2005), shown in figure 2. To generate the actual data we used the tool Tetrad IV – a 
Java and web-enabled version of Tetrad II (Scheines 1994) – to build a structural 
equation model (Hayduk 1996) corresponding to the yeast gene regulatory pathways. 
We used randomized weights for the path coefficients. 

 

Fig. 2. The model of yeast regulatory pathway adapted from (Yeang, Mak et al. 2005) which 
was used for generating test data for the evaluation of the method 

One difference from the yeast pathway of (Yeang, Mak et al. 2005) is that Tetrad 
IV does not support the specification of mutual influences which form a cycle 
between variables which have mutual inhibition relations in the pathway. These were 
therefore replaced with correlation edges (e.g. between STE12 and DIG1 in figure 2). 
We created sample sets of sizes 6, 12, 24, 48, 100 and 1000 to simulate the whole 
spectrum of realistic to unrealistic amounts of data. Each element of each sample is 
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simply a “snapshot image” of the values of all the variables of the model. Since the 
model contains 21 variables, each element of each sample contains 21 values, and it is 
from these values that the pairwise, observed, correlations are estimated. 

For all the experiments reported below, the initial models were created according 
to three simple heuristics: 1) For each variable in the path diagram, add one causal 
arrow to the variable with strongest correlation. 2) Make two passes over all variables, 
and for each one that has a higher number of incoming edges than outgoing, change 
all edges into outgoing ones. 3) Set the initial path coefficients to the observed 
pairwise correlations. 

The path coefficient optimization is a simple steepest-ascent hill-climber. For each 
path coefficient a change from the old value to the average of the old value and a 
pseudorandom number with approximately uniform distribution between -1.0 and 1.0 
is evaluated, one after another. Path coefficient changes which improve the model 
error E (1) are kept. This iterates for a user-selectable time-period. We used 100ms 
for the optimization each model. The measure optimised is the sum of the squared 
differences of the model-implied correlations and the observed correlations of all 
variable-pairs X and Y in the path diagram: 

                      E = Σ (model_implied_r(X,Y) – observed_r(X,Y))2 (1) 

No cross-over operations were used in the evolutionary search. The code 
developed for performing mutations favour adding (approx. a 50% chance) a 
functional arrow between variables with strong correlations, over removal of the 
weakest arrow or correlation (40%), over adding a totally random functional arrow 
(9%), over adding a totally random correlation edge (1%). We used a population size 
of 25, and included single-individual elitism and tournament selection (tournament 
size 2). All runs were allowed to last for 300 seconds, since initial testing revealed 
that all models converged in that amount of time. 

3   Results 

The models’ sensitivity and specificity values (Attia 2003) were calculated with the 
original model (figure 2) as reference and ignoring the edge directions. Sensitivity is 
the proportion of edges in the original model that exist in the compared model, while 
specificity is the proportion of absent edges in the original model that are also absent 
in the compared model: 

TruePositiveCount / (TruePositiveCount + FalseNegativeCount) (2) 

TrueNegativeCount / (TrueNegativeCount + FalsePositiveCount) (3) 

3.1   Model Initialised on a Sample of Size 1000 

The initialisation assumes that a variable generally has a larger number of arrows 
starting from it than pointing to it. It also assumes that directly interacting variables 
generally receive higher correlation values than indirectly interacting ones. To 
investigate the effect of these heuristics we compared the sensitivity and specificity of 
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the model immediately after initialisation (figure 3) with those of the original model 
(figure 2). Visual inspection of the initialised model reveals that many edges from the 
initial model are missing, and the model consists of three islands of variables. 
However, since there are so few extra edges the specificity remains high. These 
effects are reflected in the sensitivity and specificity values of 0.65 and 0.99, 
respectively. Many variable pairs are not linked by a direct edge in the original model, 
and these contribute to the excellent specificity for the initialized model since the 
heuristics favour initial models with few arrows. Thus, correctly absent edges 
contribute strongly to the high specificity values. 

 

Fig. 3. Model initialised from a sample of size 1000 

3.2   Model Initialised and Optimised on a Sample of Size 1000 

The evolutionary optimization which starts from the initialised model was successful 
in correcting many of the remaining errors. The only guidance that the evolutionary 
search receives during the optimization, is in the form of the error value E. The 
optimised model, shown in figure 4, has increased the sensitivity to 0.88 and the 
specificity was reduced to 0.94. This indicates that mainly correct direct edges have  
been added by the evolutionary search, resulting only a slight reduction of the 
specificity. 

 

Fig. 4. Model after initialization and evolutionary optimization on a sample of size 1000 
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3.3   Summary of Results  

Table 1 presents the results of our experiments. For different sample sizes we report 
typical values for the error E, sensitivity and specificity. As expected, problems 
accumulate when models are modified according to pairwise correlations that are 
created from smaller samples. The error E gets worse with smaller samples as well, 
and this predominantly affects the sensitivity. Edges are missing from the model, but 
the evolutionary search cannot really decide which edges to add to the model since the 
signal to noise ratio gets worse with small samples. It is clear from the values shown in 
the table that a sample size of six is too small for this approach. A sample size of 12 is 
a clear improvement, even if the usefulness of a model with a sensitivity of .42 is 
doubtful. Somewhere above 24 samples the gains in sensitivity from increasing the 
sample size start decreasing. Finally, it might be difficult to argue for the added 
expense of additional experiments after reaching a sample size of about 100. 

Table 1. Final error E, sensitivity and specificity values for various models and sample sizes. 
“Initialized model” shows results from applying heuristics and path coefficient optimization. 
”Evolutionarily optimized model” shows the results of heuristics, evolutionary search for 
topological changes and path coefficient optimization. “Original model” shows values obtained 
when using the known topology of the path diagram and optimization of path coefficients. 

Sample 
size

Initialized model Evolutionarily 
optimized model 

Original model 

 Error Sen Spe Error Sen Spe Error Sen Spe 
6 24.8 .23 .94 9.65 .38 .86 16.34 1.0 1.0 

12 8.92 .42 .95 3.12 .42 .89 4.67 1.0 1.0 
24 9.92 .42 .96 3.02 .61 .90 2.22 1.0 1.0 
48 7.96 .62 .98 1.27 .73 .94 1.55 1.0 1.0 

100 12.11 .65 .99 .43 .84 .94 .47 1.0 1.0 
1000 8.95 .65 .99 .10 .88 .94 .08 1.0 1.0  

4   Discussion and Conclusions 

We have presented a combination of path diagrams and evolutionary search for 
modelling gene regulatory networks and tested its performance on data generated 
from a simulated yeast gene regulatory pathway. Similarly to relevance networks 
(Butte, Tamayo et al. 2000), path diagrams allow multiple connections for each 
variable and can include disparate data sources in one model. In contrast to relevance 
networks, our approach takes into account the indirect influences between variables in 
the network and the arrow directions are significant. In comparison to Bayesian 
networks (Pearl 1988; Friedman, Linial et al. 2000) path diagrams are not restricted to 
acyclic graphs and do not require discrete variables. 

Our evaluation shows that once a correct model has been identified, it consistently 
and significantly receives a lower error E compared to incorrect models, thus 
indicating the overall feasibility of this approach. We have further done experiments 
(data not shown) on performing random topological changes to the original model and 
it clearly showed that any changes to  the structure of the original model leads to a 
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larger error, confirming these observations. However, finding the best fitting model 
with an uninformed search process is extremely unlikely for any nontrivial problem 
size and there is often a large number of suboptimal models which fit with 
approximately similar prediction errors to a given set of observations. 

We observe, not very surprisingly, that the search process gets trapped in local 
minima with increasing frequency when the signal-to-noise ratio gets worse with 
insufficient sample sizes. Even after successful optimization the models can encode 
very different, and often conflicting, causal theories, but in a realistic situation it is 
impossible to decide solely from a given set of observations which theory is more 
correct than the other. Only with additional information is it possible to discriminate 
among alternative models with similar errors. This additional information could come 
from expert knowledge or databases not used during construction of the models, or 
from new experiments which are specifically targeted towards discrimination between 
the remaining model alternatives. 

5   Future Directions 

It is very clear from these results that access to sufficient data of high quality is a 
prerequisite for good models. Biased or too small samples will generate a lot of 
spurious hits, which can perhaps eventually be computationally filtered out by having 
access to raw data from many independent experiments. Large amounts of data can 
suppress the spurious hits if proper, statistical, caution (Ioannidis 2005) is used in the 
fusion of data. However, for realistic situations with less than optimal data, we are 
currently examining different path diagram mutation strategies in which we try to 
incorporate existing knowledge about experimentally verified biological facts. For 
example, finding (Wernicke 2006) and using sets of network motifs frequently 
observed in S. cerevisiae (Lee, Rinaldi et al. 2002), could perhaps be used to guide the 
evolutionary search, either for the initialization of the search or to suggest model 
revisions. To accomplish this, to use known facts from one organism in order to 
bootstrap the learning for a new one, we are looking at using GO-annotation data. 

We are also investigating the possible benefits of using semantic alignments of 
biological pathways (Gamalielsson and Olsson 2005) to generate candidate solutions 
for the initial population. Our plan is to use a measure of semantic similarity between 
Gene Ontology annotation terms to score pathway alignments, in order to suggest 
changes to existing subgraphs in models during search and optimization. 

Finally, we are investigating methods based on the results of (Pearl 2001). Even if 
basic assumptions of the methods presented by Pearl are violated, perhaps there are 
still some useful hints available that the evolutionary search can benefit from. 
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Abstract. In some areas of bioinformatics (like protein folding or se-
quence alignment) the full alphabet of amino acid symbols is not nec-
essary. Often, better results are received with simplified alphabets. In
general, simplified alphabets are as universal as possible. In this paper
we show that this concept may not be optimal. We present a genetic
algorithm for alphabet simplifying and we use it in a method based on
global sequence alignment. We demonstrate that our algorithm is much
faster and produces better results than the previously presented genetic
algorithm. We also compare alphabets constructed on the base of univer-
sal substitution matrices like BLOSUM with our alphabets built through
sequence alignment and propose a new coefficient describing the value of
alphabets in the sequence alignment context. Finally we show that our
simplified alphabets give better results in a sequence classification (us-
ing k-NN classifier), than most previously presented simplified alphabets
and better than full 20-letter alphabet.

Keywords: amino acid alphabet, sequence alignment, substitution ma-
trices, protein classification.

1 Introduction

Proteins are represented by 20 symbols, usually each symbol is a letter of the
English alphabet and corresponds to one amino acid. However, in some cases, a
simplified alphabet can be more convenient. In a simplified alphabet there are
less than 20 symbols - each symbol from the simplified alphabet replaces a set
of symbols from the original alphabet. In general, a simplified alphabet is built
by grouping sets of symbols from a starting alphabet together - each group is
represented by a new symbol. In this paper we consider if a simplified alphabet,
which is as universal as possible, is the best choice for sequence alignment and for
classifying a new protein. We propose a fast genetic algorithm for finding simpli-
fied alphabets and compare it to previously presented methods, where standard
substitution matrices like BLOSUM are used. Next, we present a method of cre-
ating simplified alphabets with no substitution matrices based on the presented
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genetic algorithm and sequence alignment. We compare simplified alphabets us-
ing a new proper alignment coefficient. We also show that simplified alphabets
can improve the correctness of amino acid sequence classification with respect
to the full alphabet.

2 Previous Work

Simplified alphabets are used in several fields of bioinformatics. In sequence
alignment (for protein classification), using simplified alphabets can provide
more reliable results (see [1]) because it is often possible to change one amino
acid to another in a protein sequence without any changes of the protein’s prop-
erties. There are also some works ( [3], [6], [11]) pertaining to how many amino
acids are needed to fold a protein properly and whether all 20 amino acids are
necessary to build all proteins that occur in Nature. There is a previously pre-
sented genetic algorithm proposed in [10] and a branch and bound algorithm
designed in [2]. We compare produced alphabets to those based on the residue
pair counts for the MJ and BLOSUM matrices ( [7]), and to those based on the
correlation coefficient ( [9]).

3 Methods

It has been shown (see [2]) that alphabet simplifying can be related to the
problem of set partitioning. The purpose is to divide an original set into disjoint
subsets which completely cover the initial set. For example we can join any
two symbols together and replace them by one new symbol. Starting from an
original 20-letter amino acid alphabet we can repeat this operation as long as
the alphabet has at least two symbols. It has also been shown that the problem
of set partitioning is a hard computational problem because of the number of
possible ways to create k subsets from a set of n elements can be calculated
recursively following this expression:

S(n, k) = k ∗ S(n − 1, k) + S(n − 1, k − 1), 2 <= k <= n − 1 (1)

where S(n,1) = S(n,n) = 1.

For a 20-letter alphabet and any count of subsets, there are more than 51x1012

possible simplified alphabets. When we consider, for example, only 8-letter sim-
plified alphabets, there are more than 15x1012 such alphabets. The question is,
which alphabet is the best and whether such an optimal alphabet exists.

3.1 Simple Rating Schema

One of the simplest ways to rate a reduced alphabet is to use one of the popular
substitution matrices, like BLOSUM. In [2] a method has been proposed based
on counting the total score for an alphabet. When we choose a substitution
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matrix, the score of a full 20-symbol alphabet is the sum of 20 exact matches,
which is equal to the alignment of two identical sequences. When we create a new
symbol, for example {CD}, from two symbols C and D, and when we align this
new symbol {CD} with the same symbol, we should consider four possibilities:
C:C, C:D, D:C and D:D because the new symbol can replace either the symbol C
or D from the original alphabet. For simplicity it has been proposed to assume
that each possibility has a 25% chance to be correct, so the calculated score
of {CD} is the average of corresponding scores: C:C, D:D, C:D and D:C. In
general, when we create a new symbol from n amino acid symbols, the score of
the simplified symbol is counted as the average of positions in the substitution
matrix corresponding to all pairs of starting symbols which are in the set replaced
by the new symbol.

3.2 Previous Algorithms

In [2] an algorithm is presented, based on a branch and bound technique, which
finds the best (partly described earlier) alphabet without checking all possi-
bilities. A genetic algorithm for finding the best simplified alphabets has been
presented in [10]. In that concept, the problem of a crossover has been resolved in
the following way: Two parent solutions are randomly selected and then the sets
of starting symbols, which correspond to one simplified symbol, from each par-
ent solution (where the solution means a simplified alphabet) are divided in half
with a k-means algorithm. This operation leads to separate the closely-related
items in each cluster. Such kind of clusters (not the parent’s original clusters)
are used for a crossover. Clusters in the child solution are created by selecting
a random amino acid and combining the clusters containing the selected acid
from the parent solutions. No mutation is used.

3.3 Genetic Algorithm

We present another genetic algorithm in which we use three genetic operators -
a natural selection, a crossover and a mutation. Each individual is represented
with a sequence of 20 numbers. One position in the sequence corresponds to one
amino acid, and the number in each position denotes the simplified symbol to
which the given amino acid belongs.

Fig. 1. The example of an individual. The simplified alphabet consists of six sym-
bols: CR (0), DGHS (1), LMT (2), AEJQ (3), FKN (4), BIOP (5), from the starting
alphabet: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T.

In the natural selection we use the same alphabet rating method which has
been also used in [2] and [10]. This rating method is used here to compare results
of algorithms, but in the later part of this paper we propose other rating methods
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based on sequence alignment. The natural selection is a tournament selection
with the tournament group of size two. The amount of those tournaments is
equal to the number of individuals in a population. After the natural selection
the number of individuals in considered population is the same as before, but
there are some individuals which appear more than once. The crossover is made
in a way similar to that presented in [12]. With a certain probability for each
individual, the second parent is randomly chosen from the rest of the population.
Then, one number (simplified symbol) from the first parent is randomly chosen
and the positions which contain this number in the first parent are rewritten to
the second parent. The result of this operation is a new generation individual
which joins the new generation population. Because the crossover probability
may not be 1 (not all individuals are used in the crossover), the new generation
can be less numerous than the parent generation. In such situations, the proper
number of individuals from parent generation is added to the new generation.

Fig. 2. The example of two individuals’ crossover. The chosen simplified symbol is ”1”.
The next generation individual is similar to the second parent, but it has ”1” on those
positions on which the first parent has ”1”.

The mutation operator changes each position in each individual (sequence)
with a certain probability, which means that some amino acids in some individu-
als are moved to other subsets (simplified symbols). The starting configurations
of individuals are created randomly using the uniform distribution. It is possible
to create individuals with different sets of numbers (which corresponds to alpha-
bets of different size). For example, one individual may have numbers from 0 to
4 while another could have numbers from 0 to 6.

After each crossover or mutation process, it is necessary to check the correct-
ness of all individuals as, even if we use the same set of numbers in the individual
representation, it is possible that in some individuals there will be no positions
containing a given number, which would mean that the number of simplified
symbols is too small. For example, when we search for a 5-letter alphabet, it
is possible that in the representation of some individuals, not all symbols from
the set 0,1,2,3,4 are present. If there is such a situation, the value on a ran-
domly chosen position is changed to the number which is missed. According to
the method used for rating the population, a situation, where we search for an
alphabet from some range of size will promote, of course, individuals with the
larger alphabet size, so when we use a considerably large number of generations
(for example 100), we get as a result only the biggest possible alphabets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



126 J. Lenckowski and K. Walczak

3.4 Speed Comparison

Our algorithm outperforms the genetic algorithm presented by [10], what is
shown in table 1. In our tests we use 100 individuals and 100 generations. The
probability of crossover was set to 0.8 and the probability of mutation to 0.01.
When we use 10 rounds of the algorithm in almost all cases, we get the optimal
solution (according to the results of [2]). As we can see in table 1, our algorithm
gives better solutions than the compared genetic algorithm and it is also roughly
two orders of magnitude faster. When we compare computational times to the
results of the branch and bound algorithm we can see that our algorithm is
about four-five orders of magnitude faster. Of course, the presented times are not
equally comparable because of the differences in systems and implementations
used but they give a good enough idea of how much faster the new method is.

Table 1. Benchmark results of the presented algorithm compared to other genetic
algorithm and the branch and bound algorithms. Average scores and times are taken
from 10 rounds of algorithms. The alphabet’s average score is the average quality of
alphabets from 10 rounds of the algorithm and the best score is the best result received
during all test rounds of algorithms.

Size Previous genetic algorithm Our genetic algorithm

Avg. score Best found Avg. time* Avg. score Best found Avg. time

4 135.317 129.600 00:00:32 122.242 120.917 151 ms

5 118.173 109.362 00:00:31 107.123 105.705 149 ms

6 105.997 98.743 00:00:30 94.379 92.967 148 ms

7 90.848 83.133 00:00:31 82.352 81.000 155 ms

8 79.208 73.095 00:00:31 70.462 69.167 149 ms

9 65.300 62.833 00:00:34 60.546 58.500 151 ms

Size Branch and bound

Best Time*

4 120.917 01:21:00

5 105.705 04:23:03

6 92.967 06:52:26

7 81.000 05:58:45

8 69.167 02:51:23

9 58.500 01:01:20

∗ Computational times have been estimated (original times have been divided by 2),
because the results presented by algorithms’ authors were received on Pentium III
processor clocked at 600MHz, which is about two magnitudes slower than a machine
used in our tests (AMD Athlon 1,2GHz).
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4 The New Method of Creating a Simplified Alphabet

Some works have been done about how to generate the best alphabet, but most
of it was based on using the universal matrices. In [9], a method of reducing
the alphabet size based on correlations indicated by the BLOSUM50 matrix
has been presented. First correlation coefficients for all pairs of matrix elements
are counted and then the pair with the highest value is grouped together. The
process is repeated until all the amino acids are divided into the desired number
of sets. In [7] a method has been described for generating simplified alphabets
based on deviation of conditional probability from random background. Authors
have presented the alphabets based on the residue pair counts for the MJ matrix
(for more details see [8]) and for BLOSUM50 matrix (see [4]).

4.1 Alphabet Generating with No Substitution Matrices

In this paper we present the method of generating simplified amino acid alpha-
bets without using any substitution or other matrices. This technique will ensure
that a generated simplified alphabet is built without any previous assumptions
about the probability of emerging any amino acids and without any knowledge
about the possibilities of replacing one amino acid by another in protein se-
quences. We use our genetic algorithm in this method, but we change the way
in which the value of a simplified alphabet is counted. The presented genetic
algorithm is fast enough to use the score of sequence alignment as the value
function. In general, to determine how good a simplified alphabet is, we align
two groups of sequences rewritten using a currently tested simplified alphabet.
To get a reliable measure, we propose an alignment coefficient describing how
good the alignment of a sequence with other sequences from the same protein
family is and how bad the alignment with sequences from other families is. We
assume that the simplified alphabet is better if it gives a higher score of align-
ment in the same family and a low score when we align sequences from different
protein families. Any biological knowledge we use in our work is only to know
some protein examples from a selection of chosen protein families.

4.2 The Alignment Coefficient

The alignment coefficient is counted this way: we assume that we have a function
A(x,y) whose value is the alignment score of sequences x and y (it is possible that
x or y are sets of sequences, in which case the value of such a function is the sum
of alignment scores between all pairs of sequences in which the first sequence is
from set x and the second from y). We mark T as a set of test sequences - in
our experiments one from each protein family. These sequences are aligned to
all other sequences from their families and from other families. The set of all
families is F and a single family from F is marked as f. Simple sequence from f is
marked as fi, while simple sequence from T is t and the real family of sequence t
is ft. The alignment coefficient is the proportion of the mean alignment score of
sequences from T with sequences from their own families to the mean alignment
score of sequences from T with sequences which belong to other families.
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q = (
∑

t∈T

(
∑

fi∈ft
A(t, fi))/|ft|

(
∑

f∈F−ft
(
∑

fi∈f A(t, fi))/|f |)/|F − 1|)/|T | (2)

In every step of the genetic algorithm, each individual is rated according to
the value of its alignment coefficient. The crossover and mutation operators work
in the same way as we described previously. The starting configuration of each
individual is randomly chosen again.

4.3 Test Settings

In our tests we use sequences from four protein families of the Immuglobulin su-
perfamily (according to [5]). Four sequences (one from each family) belong to the
test set and are aligned with other sequences from the following families: C1 set
domains, C2 set domains, I set domains and V set domains. To rate a simplified
alphabet, which is equivalent to counting the value of the alignment coefficient,
we rewrite all sequences from the experiment using this alphabet changing all
symbols from each subset to the same symbol chosen from this subset. We then
align the sequences so that each test sequence is first aligned with sequences from
its family while noting the average score. Next, each test sequence is aligned with
sequences from all other families noting the average score again. The results of
alignments are used to count the alignment coefficient. In our tests we have used
a global (Smith-Waterman) alignment algorithm implemented in the package
neobio.alignment from neobio.sourceforge.net. We have chosen the following val-
ues of parameters: match reward = 5, mismatch penalty = -3, gap penalty = -4.
For the classification tests we use 240 sequences (from the same four protein
families of the Immuglobulin superfamily) - 50 sequences are randomly chosen
to a test set and the remaining is a training set. The classifier is a 10-NN classi-
fier, where the distance is counted as the alignment score between sequences (the
higher the alignment score, the smaller the distance). For each test sequence, 10
other sequences with highest alignment scores to it are found in the training
set, and the class of the test sequence is the one, which contains the most se-
quences matching the selected 10. The error of classification is the percentage of
incorrectly classified test sequences, an average from 50 experiments.

5 Experimental Results

We have made a series of experiments with various sizes of alphabets to compare
the results of our method to the most popular simplified alphabets presented in
the previous work ( [2], [9] and [7]). We observe that there are certain similarities
with alphabets presented previously, especially when the size of an alphabet is
small, which can be seen, for example, for 5-letter alphabets - ACKP, DHMFS,
GIV, NTWY, RQEL (our alphabet), IMVLFY, PGAST, HNQEDRK, W, C (the
alphabet based on the scoring schema from [2]), MFILV, ACW, YQHPGTSN,
RK, DE (the alphabet based on the residue pair counts for the MJ matrix [7]),
IMVL, FWY, G, PCAST, NHQEDRK (the alphabet based on the residue pair
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Fig. 3. Values of the alignment coefficient for different alphabet generating methods
and alphabet size range from 5 to 12

Table 2. The error classification rate for simplified alphabets. The result for the 20-
letter alphabet is 33.2%. We present the results of our alphabets (a), alphabets based
on a scoring of the whole alphabet [2] (b), alphabets presented in [7] for MJ (c) and
BLOSUM matrix (d), alphabets presented in [9] (e).

Size Classification error in %

(a) (b) (c) (d) (e)

12 32 27.8 34.3 32.6 30.1

10 26.9 29.7 31.5 30.4 31.1

8 30.2 29.2 31 30.2 31

counts for the BLOSUM matrix [7]), ILMVC, ASGPT, FYW, EDQN, KRH (the
alphabet based on the correlation coefficient [9]). When the alphabet is larger
(less simplified), the discrepancies become more evident. These observations are
also reflected in values of the alignment coefficient. On fig. 3 we present the values
of the alignment coefficient for simplified alphabets generated by the described
method. We can see that when alphabets are quite similar, the values of the
coefficients are similar too. When alphabets differ more, what can be seen, for
example, in 10-letter alphabets, the value of the coefficient of our alphabet is
roughly 50 percent greater than for other alphabets. We also observe that when
an alphabet has more than 10 symbols the value of the coefficient grows slowly
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and the differences between alphabets generated by presented methods become
smaller. This corresponds to the previous results, according to which, 9-10 letter
simplified alphabets allow storing almost as much information as full 20 amino
acid alphabets. Therefore, for these sizes of alphabets, choosing the correct one
is especially important. According to fig. 3, we can conclude that the results of
alphabets generated using the deviation of conditional probability from random
background are better than results from those generated using a correlation
coefficient, and much better than results generated using a simple score schema
proposed in [2].

In table 2 we present the classification error rate for considered simplified
alphabets. We observe, that a 10-letter alphabet generated by our method yields
the best result in this test. Almost all simplified alphabets provide better results
than the full 20-letter alphabet, which confirms our hypothesis that simplified
alphabets allow to better classify protein sequences.

6 Conclusions

In all sizes of alphabets, the alphabets generated using our method have had
higher values of alignment coefficients. The optimal alphabet for sequence clas-
sifying is also the one produced by the new method. This confirms our hypothesis
that universal simplified alphabets may not always be suitable for sequence align-
ment in classifying a new sequence and that good simplified alphabets can be
better than the full 20-letter amino acid alphabet. When we can narrow the re-
gion of researches to certain protein families, we can then find and use alphabets
which yield better classification, meaning greater differences in alignments with
sequences from the correct protein family and sequences from other families.
Furthermore, our method is flexible as it allows us to use as many sequences
and protein families as desired. In view of the quantity of sequences used, the
algorithm is linear scalable, however, we should remember that the global align-
ment, which is used to rate individuals, has the computational time complexity
of O(n2). Our results therefore show that it is possible to generate useful sim-
plified alphabets without any knowledge of the problem space. For example, we
can simplify the amino acid alphabet even when we have no knowledge of the
physical or chemical properties of amino acids. The presented method allows us
to simplify alphabets of all kinds for many purposes, the one requirement being
to have an objective value function to rate the alphabet. In this work, this kind
of function is the alignment coefficient.
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Abstract. Systems biology is the ever-growing field of integrating mole-
cular knowledge about biological organisms into an understanding at
the systems level. For this endeavour, automatic network reconstruction
tools are urgently needed. In the present contribution, we show how the
applicability of evolutionary algorithms to systems biology can be im-
proved by a domain-specific representation and algorithmic extensions,
especially a separation of network structure evolution from evolution of
kinetic parameters. In a case study, our presented tool is applied to a
model of the mitotic spindle checkpoint in the human cell cycle.

1 Introduction

Reverse engineering of biochemical networks, making sense of rapidly growing
molecular proteomics data, is a promising and important field at the crossroads
of optimisation and model selection. Supplementing human-curated models with
automatically generated, data-based models will enhance our understanding of
the function of cells as a whole, which is at the core of systems biology.

Evolutionary algorithms (EA) and especially genetic programming (GP) have
a long-established history as heuristic optimisation techniques [2,13,15]. Re-
cently, methodologies adapted from this field have been used to evolve artifi-
cial biochemical networks, capable of performing arithmetic calculations [7] or
specific behaviours such as oscillations and switching [10,17]. Others have used
similar techniques to reconstruct metabolic pathways from time series data of
chemical species [14]. While these attempts were successful for small networks,
they also highlighted the complexity of evolving larger networks.

To expand our capability of evolving networks, improvements on these algo-
rithms have to be investigated. In this contribution, we propose a separation
of structural evolution of the network from kinetic parameter evolution, which
yields a pronounced increase in the algorithm’s fitness performance. Our studies
show that this separation helps to prevent premature convergence when evolving
networks performing arithmetic calculations. We suppose this happens because
parameter fitting after each structural mutation smoothes their effect, which
is usually rather strong. In this way, network parameters can adapt to a new
topology before this topology is evaluated.
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Fig. 1. Biological principle of signalling in eukaryotic cells: from arriving stimuli to
specific cell response

Two other ideas are also investigated: the biologically-inspired mutation oper-
ator of species duplication, and the use of Akaike’s Information Criterion (AIC)
as a fitness function to evolve parsimonious models. By using the markup lan-
guage SBML, the tool described here can work directly on systems biological
problems, aiming at applications throughout this growing community.

In a case study, we apply our algorithm to a model of the human mitotic
spindle checkpoint. By allowing the algorithm to introduce additional reactions,
the performance of the model can be increased in comparison to a mere opti-
misation of parameters. Although biological plausibility is not considered, the
example serves as a proof of concept for further investigations.

2 Modelling and Evolving Biochemical Networks

Biochemical reaction networks found in pro- and eukaryotic cells represent im-
portant components of life. Despite their high degree of complexity, they are
hierarchically arranged in modular structures of astonishing order. The function
of a cell emerges from the interplay of connected reaction processes. Three essen-
tial types of biochemical networks can be distinguished: metabolic, cell signalling
(CSN), and gene regulatory (GRN) networks [1]. While metabolism consists of
coupled enzymatically catalysed reactions supplying energy, CSNs and GRNs
perform information processing of external and internal signals [6]. Malfunctions
or perturbations within these networks are the cause of many diseases.

We have built a software tool implementing an evolutionary algorithm that
evolves artificial biochemical networks performing pre-specified tasks. As a rep-
resentation format, the systems biology standard SBML [9] is used, the most
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Fig. 2. Example solution and corresponding time series of input and output species for
the third root network, produced using the CellDesigner [11] tool

common interchange format for biochemical models. This provides us with the
opportunity to profit from an immense variety of tools developed for the analysis
and interpretation of such models. The evolutionary algorithm used here employs
eight different mutations:

– Addition / deletion of a species
– Addition / deletion of a reaction
– Connection / removal of an existing species to / from a reaction
– Duplication of a species with all its reactions
– Mutation of a kinetic parameter

While the first six and the last mutation have been used before, we are not
aware of work that has used species duplication for the kind of network evolution
discussed here. Crossover between networks is possible, but its effects are not
part of this work and it has been disabled for all presented experiments.

Fitness evaluation in the algorithm is done by integrating the ODE system
resulting from an individual model using the SBML ODE Solver Library [16], a
tool designed precisely for that task. The resulting multidimensional time series
is then compared to a target, and the weighted quadratic difference

f = 1/C

C∑

c=1

1/S

S∑

i=1

1/mc,i

N∑

j=1

(xc,i(tj) − yc,i(tj))2,

with mc,i =
T∑

j=1

(xc,i(tj) + yc,i(tj))/2, i = 1, . . . , S,

between the resulting time series x and the target time series y defines the fitness.
Here, i = 1, . . . , S runs over the set of evaluated species, and c = 1, . . . , C runs
over the fitness cases. Thus, fitness values are minimised, 0 being the absolute
lower bound. If a steady state value is regarded as the result of the computation,
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Fig. 3. Outline of the two-level evolutionary algorithm

a constant time series is the target and the first few timesteps are discarded.
When Akaike’s Information Criterion (see Section 4) is applied, the number of
free parameters in the model k (kinetic parameters plus free initial conditions)
and the number of data points n = CTS are incorporated and the fitness is
modified in the following way:

fAIC = 2k + (nlog(f)) + 2k(k + 1)/(n − k − 1)

In this case, fitness is still minimised but can be negative without lower bound.
Selection is elitistic, with a certain percentage of the population surviving to

the next generation, which is filled by mutants of survivors. It is possible to fit
kinetic parameter before evaluating the model structure, a technique described
in detail in the next paragraph. The software and all data shown in this paper
is available from the authors upon request.

3 Separating Structural from Parameter Evolution

The evolution of an artificial network model can be separated into two parts: On
the one hand, a set of species and reactions adequate for the task has to be found.
On the other hand, the parameters of this model structure have to be optimised.
The problem is analogue to model inference, where a dataset is used not only to
fit the parameters of a model, but rather to choose a model structure together
with a set of parameters. For nonlinear problems, this is still a largely unresolved
challenge. Here, we show that a separation of model-structure evolution from
parameter-fitting helps to prevent premature structural convergence.

In traditional GP approaches, parameters are usually evolved together with
programme structure. In our approach, we use the opportunity to differentiate
mutation and selection on the model structure from parameter fitting. To this
end, a two-level evolutionary algorithm was implemented (Fig. 3), where the
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Fig. 4. Average best-fitness with standard error over ten runs of the evolution of loga-
rithm networks. Left column: two-level EA, middle column: one-level for many genera-
tions (note the different scale), right column: one-level with a large population. Upper
row is without AIC, lower row uses AIC. Headers: p = population size, s = number of
survivors, I = number of generations.

upper level evolves a model structure in analogy to GP, while the lower level
takes care of the parameters with an evolution strategy (ES) [3].

In order to test the effect of this separation on the performance, we evolved
networks supposed to perform two tasks: calculating the third root and logarithm
of a positive real number. Here, “calculating” means that the input is set as ini-
tial concentration of species input, while the output is read from the steady state
concentration of species output. Therefore, the target time series for the output
species is simply the desired output value, constant over a period of time, where
the first few timepoints are excluded from the fitness evaluation. An example so-
lution for a third root network is shown in Fig. 2. While the third root has been
observed to be solvable but substantially more difficult than a square root net-
work [7], no precise solution to the logarithmic problem is known yet. Therefore,
the best possible approximation to the logarithm is sought. In this work, the main
focus is not put on the evolved networks, but rather on the evolutionary process.

Three different strategies were used, each with and without AIC:

1. Two-level evolution using ES for local fitting (upper level: (25+25)-elitist
selection, 29 generations, only structural mutations; lower level: (5,15)-ES,
99 generations, only parameter mutations)
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2. One-level evolution running for more generations ((25+25)-elitist selection,
29999 generations, structural and parameter mutations)

3. One-level evolution employing a larger population ((2500+2500)-elitist se-
lection, 299 generations, structural and parameter mutations)

The parameter settings were chosen such that the number of fitness evaluations
and the ratio of structural vs. parameter mutations are identical, enabling an
objective comparison. The one-level strategies invested the saved fitness evalu-
ations into more generations (2) or more individuals (3). In the ES, adaptive
stepsizes were disable to make the results comparable. Computations were car-
ried out as single-processor runs on a cluster of workstations equipped with two
Dual Core AMD Opteron(tm) 270 processors running Rocks Linux.

Results of the evolution of a logarithm-network (Fig. 4) show that the two-
level structure of the algorithm improves fitness development drastically in com-
parison to a larger number of generations, while it prevents the premature
convergence seen with a larger population. A large population seems to enable
the algorithm to guess a good initial network, but it is unable to improve upon
this. In contrast, the two-level approach improves the network continuously,
yielding significantly better results in the end.
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Fig. 5. Average best-fitness with standard error over 100 runs of the evolution of
third root networks. Left column: two-level EA, middle column: one-level for many
generations, right column: one-level with a large population. Upper row (log scale) is
without AIC, lower row uses AIC. Headers: see Fig. 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



138 T. Lenser et al.

Figure 5 shows the average fitness development for the third root task. Re-
sults are similar to Fig. 4, although not as pronounced. Again, the two-level
strategy drastically outperforms the setting with more generations, while its ini-
tial progress is slower than for a large population. However, the large-population
approach converges too early, while the two-level setting continuous to improve
in a smooth fashion. In this task, the networks were also required to be mass-
conserving, i.e. it was demanded that a feasible configuration of molecular masses
for the different species exists. This constraint might explain the slower rate of
convergence in comparison to the logarithm-trials.

As a control test, we performed a random search with the same parameters,
replacing mutations in the evolutionary algorithm with creation of new random
individuals. The EA drastically outperformed random search, resulting in fitness
values one order smaller after 750000 fitness evaluations (data not shown). Even
though random search finds good initial solutions, it cannot narrow its search
and thus lacks the ability to fine-tune the network for the desired calculation.

4 Using AIC to Evolve Parsimonious Models

Another focus of our investigations was the effect of using Akaike’s Information
Criterion (AIC) as a fitness measure. This measure weights the goodness-of-fit of
a model against the number of its free parameters. Given that more parameters
will lead to a better fit, but not always to a better explanation of a dataset,
AIC formalises a compromise between free parameters and data-fitting. For an
overview of information-theory model selection tools, including AIC, see [4].

To investigate AIC, we compared fitness values and free parameters after runs
with AIC with those without. Our results are mixed: while AIC has a tendency
to reduce model size (not shown), it can drastically affect fitness development,
especially for the one-level approaches (Fig. 4 and 5). It seems that AIC either
causes premature convergence to small models with bad function, or models
achieve the desired function while size increases. This effect is explained by
considering that AIC assumes stochastic data, which target time-courses here
are not. When models can be fitted perfectly to desired values, the goodness-of-fit
dominates the number of free parameters.

5 Species Duplication - A Soft Mutation Operator

A major problem with evolving biochemical networks seems to be the often
deleterious effect of structural mutations on network behaviour. Additions and
deletions of species and reactions usually change the resulting time series dras-
tically, especially for smaller networks. Therefore, we are looking for “softer”
mutation operators. Inspired by biology, one such operator is the duplication
of a species and all the reactions it participates in. When the rate constants of
all reactions producing the species are halved, this operator does not affect the
concentrations of non-mutated species. Later on, deletions and rate mutations
can exploit the additional freedom gained by duplication.
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Fig. 6. Average fitness development with standard error for logarithm networks, results
from 100 independent runs. Left: species addition and duplication together, middle:
only addition, right: only duplication. Also shown are the best 5 runs per setting (gray).
Global selection is (50+100)-elitistic, local fitting is a (1+10)-ES, and 50 generations
were calculated.

Our results (Fig. 6) show that even though species duplication alone is inferior
to addition of new species with random reactions, combining both operators does
not yield an inferior result. However, it is still open under which conditions the
combined approach improves the random addition of new species.

6 Case Study: The Human Cell Cycle Spindle Checkpoint

Segregation of newly duplicated sister chromatids into daughter cells during
anaphase is a critical event in each cell division cycle. Any mishap in this process
gives rise to aneuploidy that is common in human cancers and some forms of
genetic disorders [5]. Eukaryotic cells have evolved a surveillance mechanism for
this challenging process known as the spindle checkpoint. The spindle checkpoint
monitors the attachment of kinetochores to the mitotic spindle and the tension
exerted on kinetochores by microtubules and delays the onset of anaphase until
all the chromosomes are aligned at the metaphase plate [8].

To demonstrate the usefulness of our approach in systems biology, we ap-
plied combined structural- and parameter-optimisation to a recent model by
Ibrahim et al. [12] of the mitotic spindle checkpoint. This model, which is orig-
inally crafted by hand according to literature and laboratory data, describes in
details the concentration dynamics of 17 species, namely Mad2, Mad1, BubR1,
Bub3, Mad2∗, Mad1∗, BubR1∗, BubR1:Bub3, APC, Cdc20, MCC, MCC:APC,
Cdc20:Mad2, and APC:Cdc20, CENPE, Mps1 together with Bub1, and the kine-
tochore as a pseudospecies. Different kinetochores are represented by three com-
partments coupled by diffusion, each with the same 11 reaction rules. The last
four species represent input signals to the model, reflected in the rate constants
of certain reactions. The model corresponds to biological experimental results,
which characterise the main components of the mitotic checkpoint.
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Fig. 7. Schematic network model of mitotic spindle checkpoint. Figure taken from [12].

Table 1. Steady-state concentrations of APC:Cdc20 for four settings of the cell: All
kinetochores unattached (1), one attached (2), two attached (3), all three attached (4).
The unoptimised model has all parameters set to 0.1, the parameter optimised one has
the values from [12], and the structurally optimised model is the result of the procedure
described here. Note that the fitness function used is different to the one in [12].

Level 1 Level 2 Level 3 Level 4 Fitness

Desired value 0 0 0 0.3 0

Without optimisation 0.086154 0.0865285 0.0869323 0.0872706 27.0122

Parameter optimised 0.010924 0.011051 0.011359 0.298768 0.470562

Structure optimised 0.000106 0.000051 0.000037 0.29972 0.000077

As an optimisation target, the concentration of the central species APC:Cdc20
is supposed to be low as long as not all kinetochores are attached, but to rise
to a higher value when they all are. In [12], this target has been combined with
behaviour from knockout-experiments (which we do not consider here) to fit the
rate constants. Here, we test which results can be achieved when the algorithm
is allowed to add additional reactions. Any reaction given in the original model
cannot be deleted. In future, it will be interesting to loosen this, which could
lead to an evolutionary model reducer isolating only the important parts of a
given model.

Our results, summarised in Table 1, show that performance of the model has
improved compared to the optimisation of rate constants alone. In principle,
this could also help to uncover additional structure in the data and to propose
additional features of the system which can then be verified experimentally. To
achieve biological plausibility, these additional features have to be constrained,
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which has not been observed in this proof of concept. The best model evolved
contains only two additional reactions compared to the original,

BubR1Z → Mad1∗X + BubR1∗Y
BubR1∗X + Cdc20Y → Mad2X + Cdc20Y ,

but these require species from different compartments to interact, which is not
intended in the model. We are currently extending our work to include plausi-
bility constraints.

7 Conclusions

As our results for the third root and logarithm tasks indicate consistently, sepa-
rating structural network evolution from parameter evolution in a two-level al-
gorithm improves the fitness performance significantly. It can be expected that
the inclusion of an adaptive stepsize - which has been excluded here to focus
on the separation effect - will deepen this advantage. This result is especially
interesting as it is in contrast to traditional GP approaches, where parameters
are usually evolved simultaneously to the programme structure.

Results for species duplication show that this operator indeed has a beneficial
effect on the algorithm, but cannot be used alone, i.e. without the addition of
species with random connections. The right balance between creative potential
and soft adaptations in different stages of the run seems to be crucial here. For
Akaike’s Information Criterion, results were unexpected: instead of facilitating
the evolution of parsimonious models with a good fitness, evolved solutions were
either stuck to small size (usually in one-level approaches), or were of the same
size as models evolved without AIC. While the first aspect results from the
general tendency of one-level approaches to premature convergence, the second
aspect can be explained by the noise-free target data that was used, allowing an
almost perfect fit in which the size term in AIC is dominated by the logarithm
of goodness-of-fit.

In Section 6, we show that the demonstrated approach can be used to au-
tomatically improve realistic models. The next steps are clearly visible now:
plausibility constraints have to be included in order to restrict the evolution to
solutions that are biologically meaningful. With this in mind, interesting results
from this field can be expected in the near future.
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Abstract. Protein-protein interactions play a pivotal role in modern molecular 
biology. Identifying the protein-protein interaction sites is great scientific and 
practical interest for predicting protein-protein interactions. In this study, we 
proposed a Gaussian Evolutionary Method (GEM) to optimize 18 features, 
including ten atomic solvent and eight protein 2nd structure features, for 
predicting protein-protein interaction sites. The training set consists of 104 
unbound proteins selected from PDB and the predicted successful rate is 65.4% 
(68/104) proteins in the training dataset. These 18 parameters were then applied 
to a test set with 50 unbound proteins. Based on the threshold obtained from the 
training set, our method is able to predict the binding sites for 98% (49/50) 
proteins and yield 46% successful prediction and 42.3% average specificity. 
Here, a binding-site prediction is considered successful if 50% predicted area is 
indeed located in protein-protein interface (i.e. the specificity is more than 0.5). 
We believe that the optimized parameters of our method are useful for analyzing 
protein-protein interfaces and for interfaces prediction methods and 
protein-protein docking methods. 

Keywords: Atomic solvation parameter, Gaussian evolutionary method, 
protein-protein interactions, protein-protein binding site. 

1   Introduction 

Protein-protein interactions play a pivotal role in modern molecular biology. Study of 
the energetics and mechanism of protein-protein association is a matter of great 
scientific and practical interest. Identifying the interface between two interacting 
proteins can reduce the search space required by docking algorithms to predict the 
structures of complexes and provides important information to identify the function of 
a protein. 

It is widely accepted that protein structural knowledge on a residue and atom level 
share common properties that can be used to distinguish a protein-protein interacting 
                                                           
* Corresponding author. 
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interface from the rest of a protein [1-4]. The hydrophobic interaction is one of the 
major contributors to the affinity of the association [5, 6]. Fernandez-Recio et al. [7, 8] 
successfully extracted the desolvation properties of protein surface to construct atomic 
solvation parameters for predicting protein-protein interaction sites. However, no 
single attribute absolutely identifies interface from the rest of a protein [3]. 
Combination of more physical–chemical properties [2, 9-12] and computational 
methods are needed for predicting protein-protein interaction sites. 

In this study, according to the concept of atomic ASA-based model, we examine the 
difference in parameters of hydrophobic and structure between the protein interface and 
the rest of the protein surface for a set of 104 protein–protein interfaces. Briefly, we 
combine secondary structure information with atomic solvation parameters [7, 8] and 
optimize these parameters using the GEM [13-18] method for developing an interface 
prediction. These 18 parameters composed of 10 of the atom properties derived form 
Fernandez-Recio et al. [7, 8] and 8 of the secondary structure properties from DSSP 
[19]. Based on these visualized optimizing parameters, we are able to predict and 
analyze interface residues of proteins which are not included in the training set, without 
any prior knowledge of the binding partner. 

2   Materials and Methods 

Figure 1 shows the scheme of our method for predicting protein-protein interaction 
binding site. First, we prepared a training data set which consisted of 52 complexes 
(104 chains) from a widely used benchmark [20] . For each chain in this data set, the 
protein surface and interacting interface are derived from the protein structures 
collected in Protein Data Bank (PDB). Based on these characteristics, we calculated all 
surface residues scores and trained the GEM parameters to distinguish interacting 
residues from non-interacting residues by ranking scores of surface residues. The 
surface residue with the score lower than a given threshold was predicted as an 
interface residue. For the predicted area of a protein, the specificity and sensitivity [21] 
were applied to measure performance. Specificity was defined as number of interface 
residues in predicted area/number of predicted area residues. Sensitivity was defined as 
number of interface residues in predicted area/number of interface residues. A 
prediction was deemed a success if predicted area with over 50% specificity [11]. 
Based on these measure factors as the scoring function, the GEM method optimized 
atomic and structure parameters to find best solution of average specificity and success 
rate from 104 training proteins. These optimized parameters were used to predict the 
protein-protein binding sites for 50 testing proteins if the score of a interface was lower 
than a given threshold obtained from the training set. 

2.1   Data Sets 

The aim of this work is to study energetics and mechanism of protein-protein association 
and improve protein-protein docking algorithm by identifying protein-protein interfaces. 
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Prepare training data set and 
optimize the parameters

Prepare test set and
predict interfaces

Training set 

Generate surface and interface 
residues of each protein

Calculate surface residue scores with
atomic and structure parameters

Optimize overall parameters using
global continuous search for best

solution of predicting results

Output optimized parameters

Testing set

Generate surface 
residues of protein

Calculate surface residue 
score using optimized 

parameters 

Predict interface residue 
according to surface 
residue score with 
score < threshold 

 

Fig. 1. Flowchart of the GEM for predicting protein-protein interaction sites 

Thus, we used 104 unbound protein chains according to 52 protein complexes selected 
from the protein-protein docking benchmark [20] which was a non-redundant data set 
contains all test cases used in previous docking studies. The benchmark complements the 
CAPRI effort, and has the advantage of using a much larger set of test cases. We discarded 
7 difficult test cases, which have significant conformational change for more than half of 
the interface backbone residues between unbound and bound structures, in order to avoid 
instable predicting system caused by more flexible protein structure. The data set consisted 
of 22 (44 chains) enzyme-inhibitor complexes, 19 (38 chains) antibody-antigen 
complexes, and 11 other complexes (22 chains). 

2.2   Parameters for Protein Interface Prediction 

In order to describe interface properties, we used atomic and structure parameters 
which combined attributes of hydrophobic properties and structure properties. The 
atomic parameters consisted of 10 hydrophobic parameters (δ) for protein-protein 
binding [7, 8] and 8 secondary structure parameters (σ) based on DSSP [19] (Table 1). 
We referred to the atomic parameters of Fernandez-Recio et al.  [8] as the initial values 
of our parameters. For example, a parameter of C aliphatic is selected from the random 
positive value (0, 300), since value of C aliphatic from atomic parameters is positive. 
The strategy ensures the optimized parameters conformed to the behavior of biology. 
The 2nd structure types were defined as DSSP [19] program, that the definition of ‘H’ is 
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alpha helix, ‘B’ is residue in isolated beta-bridge, ‘E’ is extended strand, participates in 
beta ladder, ‘G’ is 3-helix (3/10 helix), ‘I’ is 5 helix (pi helix), ‘T’ is hydrogen bonded 
turn, ‘S’ is bend and ‘others’ is determination stands for loop or irregular. Loops and 
irregular elements are often called "random coil" or "coil". Training set of 104 
high-resolution crystal structures was then used to train the overall parameters by 
GEM. Each value of parameters was used to calculate score of surface residue and 
optimized by GEM directly according to the specificity, sensitivity, and success rate.  

Table 1. Parameters for protein-protein interaction sites prediction 

Atom type Optimized hydrophobic 
value ( ) (GEM) 

Atomic Solvation 
Parameters 

(Fernandez-Recio et al.)

2nd structure
type weight ( )

C aliphatic 8.607 19.18 H 3.06
C aromatic 257.134 110.80 G 15.12

N uncharged -11.500 -39.10 I -5.14
N  in Lys+ -295.247 -126.04 B -13.74
N 1,N 2 in 

Arg+ -26.958 -62.56 E 12.22

O hydroxyl -6.091 -42.55 T 15.22
O carbonyl -1.619 -31.28 S 18.18

O- in Glu, Asp -41.291 -68.77 others 13.84
S in SH 281.919 25.76   
S in Met 298.668 5.06   

 

2.3   Surface, Interface, and Surface Patch 

Surface and interface residues of the proteins were identified according to the atom 
coordinates in the PDB. Solvent accessible surface areas (ASA) for each residue are 
calculated using DSSP [19]. A residue is defined to be a surface residue if its ASA is at 
least 25% of its nominal maximum area [22] as defined by Rost and Sander [23] . The 
distance-based definition of interface used here was that a surface residue is defined as 
an interface residue if its side-chain center is within 4.5Å of the side-chain center of a 
residue belonging to another chain in the complex. There is no indication that this 
criterion is better or worse than others [24]. Ofran et al. [25], for example, used a cut-off 
distance that if any of residue atoms < 6Å from any atom of the other protein. Sternberg 
and coworkers [26] set a cut-off distance of 8 Å between the Cβ atoms. 

A patch was defined as a surface area decided by a residue at a protein surface as a 
centre with different radius sizes. For example, a protein with 100 surface residues 
would have 100 surface patches. To ensure that we did not measure through the protein, 
the following procedure was followed. A Cβ of every surface residue on the protein (a 
Cα for glycine) was used to calculate distances between all surface residues. The patch 
was grown from a single starting (seed) residue and subsequently used to generate 
series of surface patch. Different-sized surface patches were generated by selecting all 
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surface residues at different radius (here, r = 1, 2, …, 20Å) from a given seed [8]. The 
final patch size of the seed was according to the lowest score of a surface patch. Scores 
of different-sized surface patches were calculated based on the parameters of the 
atomic ASA of their component residues and secondary structures. This process was 
iterated using the newly acquired residues, until the total number of residues in the 
patch was equal to the total number of residues in the surface. 

2.4   Scoring Function  

The desolvation properties of a given surface residue were calculated using an atomic 
ASA-based model [27, 28], and we combined new attributes of secondary structure 
properties to consider interface structure information. 

The surface residue score S of each residue k in a protein surface is calculated as 

,))(min( )()(∑
∈

+×−=
rshperei

iSSiiSAk ASAS σδ  

where the atom i within the sphere of a defined radius r and the Cβ of residue k as the 
center where r ranges from 1 to 20 Å; δSA(i) is the weight of the atom type SA(i); ASAi is 
the solvent accessible of the surface area of the atom i; σSS(i) is the weight for the 2nd 
structure type SS(i). The lowest score of the surface patch is selected for the final score 
of the residue k. To assess the surface residue score S of a residue k is with respect to the 
whole protein, the Sk is transformed into Zk and is calculated as 

,
γ

SS
Z k

k

−=  

where S  and γ are the average surface patch score and the standard deviation, 
respectively, of all of the residues in a protein surface. Residues with Zk lower than a 
given threshold (Zcut) are taken as the predicted interfaces. In other words, we calculate 
score of each surface residue and identify interface residues according to their scores. If 
scores of residues are lower than Zcut, we mark these residues to be protein-protein 
interaction site. In this paper, the Zcut is set to -1.5.  

The specificity, sensitivity, and success rate were used to evaluate the performance 
of a computational method. For the predicted interfaces of a protein (p), the specificity 
(ψp) and sensitivity [21] are define as the number of interface residues in predicted area/ 
total number of residues in the predicted area and as the number of interface residues in 
predicted area/ total number of the interface residues, respectively. A prediction was 
deemed a success (ωp) for a protein if specificity is more than 0.5 [11]. 

2.5   GEM Algorithm  

GEM is a multi-operator approach that combines three mutation operators: 
decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and self-adaptive 
Cauchy mutation. It incorporates family competition and adaptive rules for controlling 
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step sizes to construct the relationship among these three operators. To balance the search 
power of exploration and exploitation, each of operators is designed to compensate for 
the disadvantages of the other. The details of GEM described in previous works [16, 18], 
have been successfully applied to some specific problems, such as protein-ligand 
docking, drug screening, and protein side-chain prediction [13-15, 17, 18]. 

Here, we provided an outline of the GEM for predicting protein-protein interaction 
sites, which can be represented by adjustable variables of atomic and structure 
parameters (Table 1) as 

),,...,,,,...,,( 8211021 σσσδδδ  

where δ is the atomic parameter and σ is the structure parameter of surface residue 
scoring function. The values of parameters are then used in the surface residue scoring 
function and predicting results are presented as specificity and success rate. In order to 
determine that the performance of adjustable parameters, we use a fitness function 
which combines specificity and success rate for GEM training. In this work, the GEM 
to optimize atomic and structure parameters for identifying protein interfaces by 
minimizing the fitness function which is given as 

,)(
1
∑

=

+−=
N

p
ppFitness ωψ  

where N is the total number of training proteins (here N is 104) ; ψp is the specificity of 
predicting results of the protein p based on the training values of atomic parameters. In 
order to raise success rate (ωp) of prediction, theωp was added into the fitness function. 
The value of ωp is depend on ψp. When ψp is more than 0.5, ωp is set to 1. Conversely, 
ωp is set to 0 if ψp is less than 0.5, 

The core idea of our GEM was to design multiple operators (decreasing-based 
Gaussian mutation and self-adaptive Cauchy mutation) that cooperate using the family 
competition model, which is similar to a local search procedure [13-15, 17, 18]. Here, 
the steps for protein-protein binding site prediction are briefly described as follows: 

1. Initialize the atomic and structure parameters of surface residue scoring function. 
The initial values for the parameters are randomly generated in the feasible 
region (-300, 300). We used a strategy, which is according to the value of atomic 
solvent parameters proposed by Fernandez-Recio et al.[8], to ensure optimized 
value conformed to the behavior of biology and increase the search speed. For 
example, a parameter of C aliphatic is selected from the random positive value (0, 
300), since value of C aliphatic from atomic solvent parameters is positive. 
Evaluate the objective value of each solution, which consists of 18 feature values, 
in the population (with N solutions) based on the fitness function. 

2. Generate a new quasi-population with N offspring by applying genetic operators. 
Evaluate the objective values of these offspring. 

3. Use selection operators to select N solutions from both parent and offspring 
solutions. 

4. Repeat steps 2 and 3 until one of the terminal criteria is satisfied. 
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The GEM parameters used in this paper are listed in Table 2 such as population 
size, initial step sizes of Gaussian mutations, recombination probability, and family 
competition length in this work. The GEM optimization stops when either the 
convergence is below certain threshold value or the iterations exceed a maximal preset 
value which was set to 200. These parameters were selected after many attempts to 
predict interaction sites for test proteins with various initial values. 

Table 2. Gaussian Evolutionary Method parameters 

Parameter Value 

Population size (N) 200 

Step size of Gaussian mutations ν = 0.2 and λ= 0.8 (in radius) 

Recombination probability 0.2 

Family competition length L = 3 

Number of maximum generations 200 

3   Results and Discussions  

The results of the GEM method for the training set are summarized in Table 3. GEM is 
able to predict the location of the interface on 65.4% (68/104) proteins in the training 
dataset. The average specificity and sensitivity are 57.8% and 35.5%, respectively. If 
we only train atomic parameters by GEM and use optimized atomic parameters to 
predict training set, the success of prediction is decreasing to 51.0% and the average 
specificity and sensitivity are 44.9% and 27.6%, respectively. In addition, if we used 
atomic parameters based on Fernandez-Recio et al. [8] without any optimization, the 
 
 

Table 3. Summary of training results from 104 unbound proteins 

Atomic and 2nd parameters  
(GEM a)

Atomic parameters  
(GEM a)

Atomic parameters  
(Fernandez-Recio et al. b)

  Success Specificity Sensitivity  Success Specificity Sensitivity Success Specificity Sensitivity

Enzyme 
Inhibitor

79.5% 
( 35/44 ) 67.1% 27.9% 65.9% 

(29/44) 56.0% 28.7% 45.5% 
(20/44) 45.9% 25.3% 

Antibod
y

antigen

60.5% 
( 23/38 ) 54.3% 33.2% 39.5% 

(15/38) 37.0% 30.1% 44.7% 
(17/38) 37.2% 25.1% 

Others 45.5% 
( 10/22 ) 45.2% 18.1% 40.9% 

(9/22) 36.2% 21.2% 22.7% 
(5/22) 32.3% 19.1% 

Average  65.4% 
(68/104) 57.8% 35.5% 51.0% 

(53/104) 44.9% 27.6% 37.5% 
(39/104) 39.8% 23.9% 

a  
a The parameters which are optimized by GEM. 
b The parameters which are based on Fernandez-Recio et al. [8]. 
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performance of prediction is the worse. Combination of physical–chemical properties 
[2, 9-12] and using computational methods to assist the finding of best parameters are 
useful for predicting protein-protein interaction sites. 

Table 4. Prediction specificities of 50 unbound proteins 

p p

PDB  GEM 
Fernandez 
Recio et al.  PDB GEM 

Fernandez
Recio et al. PDB GEM  

Fernandez
Recio et al.

1a19A 1.00 0.89 1eztA 0.16 0 1pco_ 0.00 0.18

1a2pA 0.66 a 1f00I 0.00 1pne_ 0.33 

1a5e_ 0.60 0.2 1f5wA 0.60 1 1poh_ 0.66 0.8

1acl_ 0.22 0 1fkl_ 0.33 1ppp_ 0.50 0.3

1ag6_ 1.00 1flzA 0.33 0.9 1rgp_ 0.00 1

1aje_ 0.50 0.4 1fvhA 0.52 0.71 1selA 1.00 0.2

1ajw_ 0.50 1g4kA 1.00 1 1vin_ 1.00 1

1aueA 0.00 0.8 1gc7A 0.21 1wer_ 0.30 

1avu_ 0.33 0.7 1gnc_ 1.00 0.1 1xpb_ 0.42 

1b1eA 1.00 0.7 1hh8A 0.00 2bnh_ 0.45 

1bip_ 1.00 1 1hplA 0.00 2cpl_ 0.66 

1ctm_ 0.31 0.63 1hu8A 0.00 0 2f3gA 1.00 

1cye_ 0.00 0.29 1iob_ 0.25 2nef_ 0.00 0.9

1d2bA 0.50 1 1j6zA 0.54 1 2rgf_ 1

1ekxA 0.00 0.22 1jae_ 0.52 1 3ssi_ 1.00 

1ex3A 0.60 1 1lba_ 0.00 6ccp_ 0.00 

1eza_ 0.08 1nobA 0.00 
 

a
 — means that there are no results of prediction. 

The overall accuracy of GEM in predicting the protein-protein interaction sites of 50 
test proteins is shown in Table 4. In order to test our performance of predicting 
protein-protein interaction sites, we tested our parameters against a accompanying 
paper of Fernandez-Recio et al. [8] and found that our atomic parameters performed at 
least as well as their atomic solvation parameters. The results of this test are 
summarized in Table 4, in which it can be seen that our method can predict 98% (49/50) 
proteins among the testing set and have 42.3% average specificity, better than 
Fernandez-Recio’s results which can predict 60% protein among whole testing set and 
have 37.8% average specificity. 

Figure 2 shows six examples of the predicted results of using GEM method for the 
training set (Figures 2a, 2b and 2c) and testing set (Figures 2d, 2e and 2f). Even if the 
predicted binding-site areas (red) do not totally match the interface area, GEM can 
predict satisfied results for these cases. For example, the specificity of 2cpl (Figure 2d) 
0.66 for GEM is better than the result from the Fernandez-Recio et al. [8] which can’t 
predict the interaction site for this protein. Although our prediction result of 1ctm 
(Figure 2e) is worse than the result from the Fernandez-Recio et al. [8] (the specificity 
of results are 0.31 and 0.63, respectively), our predicting area fits the interaction site 
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Fig. 2. Six predicted examples of using GEM method: (a) hyhel-63 Fab (1dqj_r); (b) 
ribonuclease inhibitor (1dfj_r); (c) β-Trypsin (2ptc_r); (d) Cyclophilin a (2cpl), (e) Cytochrome f 
(1ctm), (f) barstar (1a19A). The partner molecule(s) in the bound conformation after 
superimposition of the corresponding molecule in the complex is represented in ribbon in (d), (e), 
and (f). Predicted interface and non-interface residues, identified by the GEM, are colored as 
follows: red is the true positives (TP), actual interface residues that are predicted as such; blue is 
the true negatives (TN), non-interface residues that are predicted as such; yellow is the false 
negatives (FN), interface residues that are misclassified as non-interface residues; green is the 
false positives (FP), non-interface residues that are misclassified as interface residues. 

well. The GEM method (specificity is 1.00) outperform Fernandez-Recio et al. [8] 
(specificity is 0.89) on barstar (Figure 2f). 

The factors causing GEM method to predict the wrong protein-protein binding sites 
can be divided into four categories. The first factor is that a protein structure consists of 
symmetrical hydrophobic cores (Figure 3a) and our method can not discriminate them. 
As shown in Figure 3a, this protein has two fibronectin type III modules whose 
hydrophobic cores merge in the domain-domain interface and our prediction is almost 
invariably symmetrical. In the secondary category, the protein has two large binding 
sites (Figure 3b): a large ligand (e.g. heme) and a protein-protein binding sites. The 
predicted area of our method is located nearby heme propionate, this result may due to 
the residues nearby the heme are more hydrophobic than protein-protein interaction 
site. In the secondary category, the binding site of a protein is hydrophilic. The surface 
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Fig. 3. Three bad predicted examples. (a) The protein (PDB code 1ahw_l) has a symmetric core 
that is the fibronectin type (b) The protein (PDB code 1wej_l) has two binding sites that are 
ligand heme (purple) binding site and protein-protein binding site. (c) The binding site of the 
protein (PDB code 1pco) is hydrophilic. The predicted and interface areas are colored with green 
and yellow, respectively, the other areas are colored with blue. 

of colipase can be divided into a rather hydrophilic part, interacting with 1pco (lipase), 
and a more hydrophobic part, formed by the tips of the fingers [29]. This suggests that 
interface of 1pco is more hydrophilic than the surface, and our method do not prove to 
be very useful in this case. The final factor is that the protein-protein binding interface 
of a protein is significantly changed from the unbinding state to the binding state. 

4   Conclusion 

We have developed a method for predicting protein-protein binding sites using the 
GEM method. Our method successfully predicted the location of the binding site on 
65.4% of the 104 proteins in training set. In addition, we applied the GEM to predict 50 
unbound proteins and obtained 46% successful prediction. 

This method can be further improved on several aspects. First, we notice that 
hydrophilic effect is the main force of protein-protein interaction in some cases. This is 
due to the fact that most interfaces of training set are hydrophobic and our parameters 
perform this characteristic faithfully. Therefore, it may be useful to classify interfaces 
of training set according to hydrophobic or hydrophilic, and each protein has two 
predicting areas which are hydrophobic patch and hydrophilic patch. Second, sequence 
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conservation tends to be important attribute to identify protein-protein interface [30]. 
Finally, we will apply our approach to other data set and to study the behavior. 
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Abstract. The effective reverse engineering of biochemical networks is
one of the great challenges of systems biology. The contribution of this
paper is two-fold: 1) We introduce a new method for reverse engineering
genetic regulatory networks from gene expression data; 2) We demon-
strate how nonlinear gene networks can be inferred from steady-state
data alone. The reverse engineering method is based on an evolution-
ary algorithm that employs a novel representation called Analog Genetic
Encoding (AGE), which is inspired from the natural encoding of genetic
regulatory networks. AGE can be used with biologically plausible, non-
linear gene models where analytical approaches or local gradient based
optimisation methods often fail. Recently there has been increasing in-
terest in reverse engineering linear gene networks from steady-state data.
Here we demonstrate how more accurate nonlinear dynamical models can
also be inferred from steady-state data alone.

Keywords: Systems Biology, Gene Networks, Reverse Engineering,
Steady-State Data, Genetic Algorithm, Analog Genetic Encoding (AGE).

1 Introduction

Genetic regulatory networks perform fundamental information processing and
control mechanisms in the cell. Regulatory genes code for proteins that en-
hance or inhibit the expression of other regulatory and/or non-regulatory genes,
thereby forming a complex web of interactions (Fig. 1a). Inference and simulation
of gene networks may contribute substantially to our biological knowledge in the
post-genomic era. Practical applications may have a strong impact on biotech
and pharmaceutical industries, potentially setting the stage for rational redesign
of living systems and predictive, model-based drug design [1]. Technologies to
assay gene expression levels in terms of mRNA concentrations are advancing at
a fast pace. Using oligonucleotide chips or quantitative PCR for instance, it is
possible to probe a set of genes of interest that are part of an uncharacterized
gene network (henceforth known as target network) under different conditions.
The goal of reverse engineering is inferring the target gene regulatory network
from this experimental data.

The choice of a suitable reverse engineering method depends on the type of
model used to describe the target network. Here we focus on models that represent
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a genetic regulatory network as a dynamical system described by a system of ordi-
nary differential equations. The linear model [1,2,3,4,5], which is based on a first-
order approximation of gene expression dynamics, is by far the most widely used
gene network model. Its main advantage is that reverse engineering can be tackled
analytically using standard techniques of system identification [1,2,3,4,5,6]. How-
ever, gene regulation is known to be strongly nonlinear. Hence, the linearization is
generally only valid in a small regime, i.e., close to a specific steady-state [1,3,5].
This implies that valuable data from perturbation experiments with a strong ef-
fect on the network (e.g., gene knockouts) cannot be used because they fall outside
the valid regime of the first-order approximation [1,5]. Furthermore, the inferred
linear model is unlikely to correctly predict network response under strong per-
turbations [1,5], as can be expected in disease for instance.

As both quantity and quality of experimental data improve, we can aim at a
more biologically plausible, faithful reconstruction of the target network. This re-
quires the conception of adequate inference methods that can handle complex,
nonlinear gene models, where analytical approaches and local gradient based op-
timisation often fail. In this paper we propose a bio-mimetic approach based on
artificial evolution [7] using Analog Genetic Encoding (AGE) [8,9], an artificial
genetic representation that has already proven its merits in benchmark problems
in the fields of analog electronic circuits [8,9] and artificial neural networks [10].
Unlike other reverse engineering algorithms based on global optimisation tech-
niques such as simulated annealing [11,12] or conventional evolutionaryalgorithms
[4,13,14,15], AGE allows simultaneous inference of model structure and numerical
parameter values. Furthermore, AGE mimics the evolutionary process of incre-
mental complexification that natural gene regulatory networks are subjected to.

In the past, most reverse engineering studies used time-series gene expression
data. However, time-series data are more difficult to obtain experimentally than
steady-state data and their information content is lower (samples in a time-series
are not independent). Indeed, there has been a recent trend towards approaches
based on steady-state perturbation data [1,3,16,17]. These studies use analytical
approaches based on first-order approximations. Here we demonstrate for the
first time – to the best of our knowledge – how nonlinear models (network
structure and parameters) can be inferred from steady-state data alone.

2 Evolutionary Reverse Engineering with AGE

The first step in the reverse engineering process generally consists in the choice of
a gene network model type (e.g. the sigmoid model introduced in Sect. 3). AGE
is not constrained to a specific model type, but can be used with a large class of
nonlinear models termed analog networks [9]. An analog network is composed
of a collection of devices connected by links of different strengths. Here, devices
are genes and links correspond to regulatory interactions1. Without limiting
1 In this paper we consider the simplest case where all devices are of the same type,

but AGE can also handle heterogeneous networks [9]. We plan to use several device
types in the future for more complex models of gene-protein networks, for instance.
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ourselves to a specific model type, we assume that genes are characterized by
a vector of internal parameters p (e.g. decay rate, maximum transcription rate,
etc.) and regulatory links have a single parameter called weight w. Within this
framework, reverse engineering requires the specification of the network structure
(size, topology) and the specification of the numerical values of all gene parame-
ter vectors p and connection weights w. Using AGE, we encode these elements in
a bio-inspired artificial genome. The reverse engineering process then amounts
to the artificial evolution of gene networks that best match the experimental
gene expression data (see Sect. 3.2). Apart from the bio-inspired genotype and
mutation operators, the evolutionary algorithm is similar to a standard genetic
algorithm [7]. It acts on a population of gene networks, which are encoded as
described below. At each generation, fitter individuals are selected with higher
probability for reproduction. Offspring are produced from the selected genomes
by applying crossover and mutation operators as described in Sect. 2.2.

2.1 Genetic Encoding

We stress that AGE is not supposed to be a detailed model of the workings
of gene networks, but a bio-inspired genotype that abstracts key features dis-
tinguishing the biological encoding from traditional artificial encodings used in
genetic algorithms. Nature has chosen a digital encoding of genomes based on
sequences of characters. Similarly, the AGE genome is constituted by one or
more chromosomes, which are sequences of characters drawn from a genetic al-
phabet. The genetic alphabet used here has 26 nucleotides, which we designate
with letters ‘A’-‘Z’. In nature, the beginning and the end of genes are marked by
signals encoded in the DNA (promoters and terminators). Analogously, we use
special nucleotide patterns (‘GN’ and ‘TE’) termed ‘tokens’ to delimit genes in
the artificial genome as illustrated in Fig. 1. Consequently, genes may be located
anywhere in the genome. Sequences that are not part of a gene are non-coding.

In a cell, the potential regulatory interaction between two genes A and B is
not encoded explicitly in the genome, but follows implicitly from a biochemi-
cal process which depends among other things on: i) The coding region of gene
A, which encodes the characteristics of protein A; ii) The regulatory region of
gene B, which contains the potential binding sites for the regulatory protein
(Fig. 1a; Note that there are other mechanisms of gene regulation not discussed
here). Thus, the strength of the interaction is implicitly encoded by the respec-
tive coding and regulatory sequence. One of the consequences of the implicit
encoding is that a single mutation in a coding or regulatory sequence may affect
zero, one or several regulatory interactions simultaneously. In contrast, in an
explicit (direct) encoding a single mutation affects only one characteristic of the
network.

Analogously, artificial genes in AGE have a regulatory and a coding region as
shown in Fig. 1b. The regulatory influence wij of gene j on gene i is implicitly en-
coded in the coding region scod,j and the regulatory region sreg,i via an interaction
map Iw that abstracts the complex biochemical process of transcriptional regu-
lation: wij = Iw(scod,j , sreg,i). The interaction map is based on local alignment
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...XOVJWPGNBMJHDBTEOODFODDPWXXTEKCMRSIZZKJUWPOXCGNJJYXXVISTEVUBYCPTESSOOXI...

Fig. 1. a) Simplified representation of transcriptional regulation. A gene is transcribed
by RNA Polyermase (RNAP). Proteins are synthesized from mRNA (translation). Gene
regulatory proteins bind to specific sites, enhancing or repressing the transcription rate
of the following gene. Genetic regulatory networks are complex webs of such regulatory
interactions. b) AGE chromosome encoding two genes. Analogous to the natural en-
coding, the beginning and the end of genes are marked by special nucleotide patterns
in the artificial genome (tokens ‘GN’ and ‘TE’). Genes have a coding region scod and
a regulatory region sreg, which may interact via an interaction map Iw(scod , sreg) that
abstracts the complex biochemical process illustrated in a).

of the two sequences [8,9]. The closer the match between two subsequences of scod

and sreg, the stronger the interaction. Details are given in the Appendix.
In summary, decoding of the AGE genome involves the identification of valid

genes (which must be correctly delimited by the corresponding tokens) and the
subsequent application of the sequence interaction map to all pairs of coding
and regulatory sequences. The interaction strength between two sequences may
be zero, in which case there is no regulatory link between the two genes. Hence,
the size of the decoded network is given by the number of genes in the genome
and the topology and weights w follow from the computed interaction strengths.

For the gene parameters p, it is desirable to use the same encoding as for the
interactions [8]. Consider first the case where genes have a single parameter p.
The value of p is decoded analogously to the weights by a sequence interaction
map: p = Ip(sp,1 , sp,2) , where sp,1 and sp,2 are two additional sequences ap-
pended to the coding region of genes as shown in Fig. 2. Further gene parameters
can be encoded by appending an additional pair of sequences for every additional
parameter. Implementation details of Ip are also given in the Appendix.

2.2 Genetic Operators

One of the key features of AGE is the possibility to apply a wide range of
biologically inspired genetic operators that are believed to play important roles
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...XOVPTEBNJAYCGNDUROZTBMXJWPGNBMJHDBTEOODFODDPWXXTEKCMRTEZZKJUWPOTEERTINB...

Fig. 2. In order to encode a gene parameter p, genes must have two additional sequences
sp,1 and sp,2 . Thus, a valid gene with one gene parameter has four sequences separated
by tokens ‘TE’. The token ‘GN’ to the left of the valid gene is not followed by the
necessary four tokens ‘TE’, thus it is not coding.

in the evolution and complexification of natural genetic regulatory networks [8].
From the point of view of the genetic operators, the tokens that delimit the
genes have no special meaning – there is no distinction between tokens, coding
and non-coding genome fragments. The operators described below are applied
probabilistically to randomly chosen parts of the genome (see Sect. 3.2).

– Nucleotide deletion, insertion, and substitution: A character is removed, in-
serted, or substituted in the genome. Random characters from the genetic
alphabet are used for insertions and substitutions.

– Chromosome fragment deletion, transposition, and duplication: Two points
are chosen in a chromosome and the intervening genome fragment is deleted,
transferred or copied to another point of the genome.

– Chromosome deletion/duplication: A chromosome is deleted/duplicated.
– Crossover : Chromosomes of parents are recombined using homologous cross-

over, which is based on the search of a homologous crossover point [8].

The application of the genetic operators can invalidate genes (e.g., through
invalidation of a token) and transform the corresponding fragments into non-
coding genome, which may play the role of an evolutionarily useful repository
of genetic fragments. On the other hand, new genes can be created, for example
through the appearance of new tokens or the duplication of a genome fragment.

3 Experiments

When applying a novel reverse engineering technique directly to biological data,
performance evaluation is difficult because the target network is unknown. Thus,
we first test AGE using synthetic expression data generated in simulation from an
in silico target gene network. Subsequently the inferred networks are compared
with the target network in order to validate the results. This is a standard
approach to assess the performance of reverse engineering methods [5].

3.1 The Test Case

Gene Network Model. We demonstrate the application of AGE using a stan-
dard sigmoid model [11,12,13,18] defined by the system of state equations:

dxi/dt = mi · σ
( ∑

j∈Ri

wijxj

)
− δixi , (1)
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where xi is the expression level of gene i, mi is the maximum transcription rate,
and δi is the degradation rate. Ri is the set of regulators of gene i and wij

represents the regulatory influence of gene j on gene i (positive for enhancers,
negative for repressors). The activation function is a sigmoid σ(z) = 1/(1+e−z) .

In the experiments reported in this paper we use steady-state expression levels
as input data for the inverse problem, though AGE could as well be applied to
time-series data. At steady-state, the state equations become a set of algebraic
equations:

0 = pi · σ
( ∑

j∈Ri

wijxj

)
− xi , with pi = mi/δi . (2)

Synthetic Target Network and Expression Data. We employ the topol-
ogy of a nine-gene subnetwork of the E.coli SOS pathway as described in [1]
as test case (see Fig. 4). We refer to this topology as SOS network. There is no
quantitative model of the SOS network available in the literature. Hence, numer-
ical parameter values for the weights w and the parameter p of the steady-state
equation introduced above are sampled randomly (see Appendix). The sign of
the weights is set according to the SOS network topology (positive for enhancers
and negative for repressors). The resulting in silico target gene networks are
random targets with a realistic topology, which is a more biologically plausible
approach than random generation of both topology and parameters [5,13].

Synthetic gene expression data is obtained by applying a perturbation to
the in silico target network and computing the steady-state expression levels
of all genes2. This process is repeated for different perturbations to gather the
necessary experimental data for reverse engineering. In our experiments we use
two different types of perturbations that are commonly used for gene network
inference: Gene knockouts, i.e. silencing of a particular gene, and gene over-
expression, which consists in artificially boosting the transcription rate of a gene.
A gene knockout can be simulated by setting the rate parameter mi to zero.
Consequently, the expression level xi of this gene at steady-state will be zero.
Over-expression is simulated by doubling the mi value of the affected gene.

For the experiments reported below we generate expression data from the in
silico SOS network for the wild type (unperturbed network) and for 9 knockout
and 9 over-expression experiments (knockout and over-expression of each gene).

3.2 The Evolutionary Algorithm

The weights w and the single gene parameter p of the steady-state sigmoid
model are encoded in the artificial genome as explained in Sect. 2. Details of the
sequence interaction maps are given in the Appendix.

Since we do not yet model noise, the least squares optimisation criterion is
suitable for the definition of the fitness. The goal of the evolutionary algorithm

2 We compute the steady-states numerically using Powell’s method of the GNU Sci-
entific Library (GSL, http://www.gnu.org/software/gsl).
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is to minimize the fitness function: f(X̂) =
∑M

i=1

∑N
j=1 (xij − x̂ij)2 , where X is

the synthetic gene expression data generated from the target network (element
xij corresponds to the expression level of gene j in experiment i) and X̂ are the
corresponding expression levels in the inferred network. M denotes the number
of different perturbation experiments and N is the number of genes. Thus, fig-
uratively speaking, the reverse engineering process amounts to finding the gene
network that best fits the target expression data.

We use the following parameters for the evolutionary algorithm. The pop-
ulation size is 200. We use elitism, i.e., the best individual is protected from
replacement. At each generation, 40 parents are chosen using tournament se-
lection [7]. From the 40 parents, 200 new individuals are created and genetic
operators are applied with:

– Probability of homologous crossover (per individual) 0.1
– Prob. of nucleotide deletion, insertion and substitution (per nucleotide) 0.001
– Prob. of chromosome fragment deletion, transposition and duplica-

tion (per chromosome) 0.01
– Prob. of chromosome deletion and duplication (per chromosome) 0.001

The choice of the parameters listed above is not critical. They were chosen
heuristically based on a series of test runs and the experiences reported in [8,9].
We observe no significant difference in the quality of results obtained with differ-
ent standard selection and replacement strategies. Note that the mutation rates
were chosen such that the more disruptive whole chromosome and chromosome
fragment mutations occur less frequently than single nucleotide mutations.

3.3 Results

The results of a batch of ten reverse engineering runs using synthetic data from
a randomly initialized SOS gene network as explained above are shown in Fig. 3.
For each run, we record the fitness f(X̂) of the best individual at every gener-
ation of the evolutionary algorithm. Of course, in addition to a good fit of the
expression data, the structure of the inferred networks should match the target
gene network. In a real biological application the structure of the target network
is unknown, but in the synthetic test case employed here the accuracy of the
inferred networks can be quantified. To this end we use the mean square error
E(θ̂) of all parameters of the reverse engineered network θ̂ (including all weights
wij and gene parameters pi) compared to the true parameter values θ of the in
silico target gene network: E(θ̂) = 1/K ·

∑K
l=1 (θl − θ̂l)2 , where θl denotes the

l-th element of parameter vector θ and K is the total number of parameters.
We refer to E(θ̂) as estimation error of the inferred network. In addition we also
count the number of false positives and false negatives3.

The ten runs shown in Fig. 3 were executed for 100′000 generations of the
evolutionary algorithm. Average computation time was roughly two days for
3 We count as false positive when a target weight wij = 0 and the absolute value of the

inferred weight |ŵij | > 0.1; A false negative occurs when wij �= 0 and |ŵij | < 0.1 .
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Fig. 3. Reverse engineering of the SOS network – ten runs. The fitness f(X̂) (left) and
the estimation error E(θ̂) (right) are plotted for the best individual of each run. As the
fitness is optimized (i.e., minimized), the inferred networks match the structure and
parameters of the target network with increasing accuracy (the estimation error goes
down). The run with the best final fitness is highlighted. For details, see main text.

one run on a standard desktop PC. All ten runs achieve a fitness below 0.1.
Since fitness is a sum of square errors, the individual expression levels are fitted
extremely accurately with a relative error in the order of 1% . As the reverse
engineering algorithm optimizes the fitness, the estimation error of the inferred
networks goes down. Four out of ten runs inferred the SOS network with high
precision4 (final estimation error between 0.02 and 0.03). In other words, these
runs closely matched the structure, weights and gene parameters of the target
network. The other runs converged at estimation errors of about 0.1 .

In a set of reverse engineering runs, one would like to choose the inferred
network with the lowest estimation error E(θ̂). However, since E(θ̂) is unknown
in a real application, this is not possible. Hence, we choose the inferred network
with the best fitness as the most plausible reconstruction of the target network5.
Here, the best run (see Fig. 3) achieves a fitness of 0.02 and the corresponding
network has a very low estimation error of 0.03 with only one false positive and
one false negative out of a total of 81 possible connections (see Fig. 4b).

In other experiments with target SOS networks with different random initial-
izations of the parameter values we have obtained the same quality of results.
AGE infers networks with very good fitness in every run. Roughly 40% of the
runs also achieve very low estimation errors (i.e., they correctly infer the target,
having only very few false positives and false negatives). Simpler networks, e.g.,

4 Further analysis indicates that the accuracy achieved by the best runs corresponds to
a lower bound given by the discretization of the search space due to the quantization
of the parameters and weights.

5 In a real application, one should not just consider the inferred network with the
best fitness – which merely corresponds to the network with the highest a posteriori
probability – but analyze all well-scoring (i.e., probable) inferred networks [13].
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Fig. 4. a) Topology of the E.coli SOS network [1]. Arrows are enhancing, Tee ends
denote inhibitory interactions. b) The topology inferred by the run with the best final
fitness is identical except for one false positive (bold) and one false negative (encircled).

cascades of size six, are inferred correctly in every run. In addition, we have
also tested gradient descent and observed that it is not successful at inferring
the sigmoid model – even when restarted many times – because it prematurely
converges to local optima with very bad fitness and high estimation error.

4 Conclusion

We have introduced a new approach for reverse engineering genetic regulatory
networks. The method is based on artificial evolution with a bio-inspired genetic
encoding (AGE), which allows simultaneous inference of numerical parameter
values and model structure (network size, topology and – in heterogeneous net-
works – the type of the nodes). AGE is not constrained to a specific gene network
model type, but can be used with a large class of nonlinear models.

Using a standard sigmoid model as test case, we have successfully reverse engi-
neered the E.coli SOS network from synthetic steady-state gene expression data.
The SOS network arguably has a more complex and densely connected topology
than typical target networks used for inference methods based on global opti-
misation techniques [11,12,13,14,15]. Thus, our results demonstrate the compet-
itiveness of AGE for inference of complex nonlinear gene regulatory networks.

There has been a recent trend towards reverse engineering methods using
steady-state perturbation data [1,3,16,17]. However, those approaches are based
on first-order approximations. Here we propose for the first time – to the best of
our knowledge – the use of steady-state perturbation data for reverse engineering
of nonlinear models. Considering the advantages of steady-state with respect to
time-series data and based on the encouraging results of our test case, we believe
this to be an extremely promising approach.

Experiments reported here were conducted with synthetic, noise-free expres-
sion data. We are currently working both on an application to real expression
data and on a more realistic in silico test case based on a mechanistic model

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



164 D. Marbach, C. Mattiussi, and D. Floreano

of a well-characterized gene-protein network. In addition, we also intend to take
advantage of the flexibility of AGE in order to explore novel, more biologically
plausible gene network models than the sigmoid model employed here.
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Appendix

We give here only a short description of the sequence interaction maps Iw and
Ik introduced in Sect. 2.1 due to space limitation. For details, refer to Refs. [8,9].

The sequence interaction map Iw(scod , sreg) that decodes the weights wij

from the respective coding and regulatory regions of genes i and j is defined
as a composed map Nw(L(scod , sreg), which is formed by a generic interaction
map L(scod , sreg) and a network-specific map Nw(i). The generic interaction
map L(scod , sreg) is defined as the local alignment score of the two sequences
[8], using the same alignment parameters as Ref. [9]. Figuratively speaking, the
closer the match between two subsequences of scod and sreg, the stronger the
interaction. Simpler techniques of sequence comparison such as exact matching
or Hamming distance would compromise evolvability [8]. The network-specific
map Nw : [imin, imax] �→ [0, wmax] transforms integer local alignment scores i
into floating-point weights. Alignment scores smaller than the threshold imin are
mapped to zero (no interaction), scores greater than imax are truncated to wmax,
and scores in between are mapped linearly onto the positive interval [0, wmax].
In the experiments reported in this paper, we used imin = 11, imax = 31 and
wmax = 2.

The alignment score given by the interaction map is always positive. In order
to represent negative weights, genes actually have two sequences scod+ and scod−
corresponding to enhancing and repressing regulatory activity (for clarity, only
one sequence scod was mentioned in Sect. 2.1). The weight is defined by the
stronger interaction: w = +Iw(scod+, sreg) if Iw(scod+, sreg) ≥ Iw(scod−, sreg)
and w = −Iw(scod−, sreg) otherwise.

Analogously to Iw, the sequence interaction map Ip(sp,1 , sp,2) used for decod-
ing gene parameter p from the respective sequences sp,1 and sp,2 is implemented
as a composed map Np(L(sp,1 , sp,2)), using the same generic interaction map L
defined above. Np : [imin , imax] �→ [pmin , pmax] maps the integer local alignment
scores onto the interval of parameter p analogously to Nw described above.

Finally, we briefly discuss the random sampling of numerical parameter values
for the in silico target network (Sect. 3.1). Weights wij were initialized uniformly
in the range [0.15, 1.5] and parameters pi in the range [1/2, 2]. These ranges
were selected empirically with the goal to obtain rich nonlinear dynamics in the
target networks, i.e., so that on average the total regulatory input for the sigmoid
activation functions was neither completely saturated nor constrained to a very
small, almost linear regime.
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Abstract. An important goal of human genetics is the identification of
DNA sequence variations that are predictive of who is at risk for various
common diseases. The focus of the present study is on the challenge of
detecting and characterizing nonlinear attribute interactions or depen-
dencies in the context of a genome-wide genetic study. The first question
we address is whether the ReliefF algorithm is suitable for attribute se-
lection in this domain. The second question we address is whether we can
improve ReliefF for selecting important genetic attributes. Using simu-
lated genetic datasets, we show that ReliefF is significantly better than
a näıve chi-square test of independence for selecting two interacting at-
tributes out of 103 candidates. In addition, we show that ReliefF can be
improved in this domain by systematically removing the worst attributes
and re-estimating ReliefF weights. Our simulation studies demonstrate
that this new Tuned ReliefF (TuRF) algorithm is significantly better
than ReliefF.

1 Introduction

1.1 The Problem Domain: Human Genetics

Biological and biomedical sciences are undergoing an information explosion and
an understanding implosion. That is, our ability to generate data is far outpacing
our ability to interpret it. This is especially true in the domain of human genet-
ics where it is now technically feasible to measure thousands of DNA sequence
variations from across the human genome. For the purposes of this paper we will
focus exclusively on the single nucleotide polymorphism or SNP which is a single
nucleotide or point in the DNA sequence that differs among people. It is antici-
pated that at least one SNP occurs approximately every 100 nucleotides across
the 3∗109 nucleotide human genome. An important goal in human genetics is to
determine which of the many thousands of SNPs are useful for predicting who
is at risk for common diseases such as prostate cancer, cardiovascular disease, or
bipolar depression. This “genome-wide” approach is expected to revolutionize
the genetic analysis of common human diseases [1], [2].

The charge for computer science and bioinformatics is to develop algorithms
for the detection and characterization of those SNPs that are predictive of hu-
man health and disease. Success in this genome-wide endeavor will be difficult
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due to nonlinearity in the genotype-to-phenotype mapping relationship that is
due, in part, to epistasis or nonadditive gene-gene interactions. Epistasis was
recognized by Bateson [3] nearly 100 years ago as playing an important role in
the mapping between genotype and phenotype. Today, this idea prevails and
epistasis is believed to be a ubiquitous component of the genetic architecture of
common human diseases [4]. As a result, the identification of genes with geno-
types that confer an increased susceptibility to a common disease will require a
research strategy that embraces, rather than ignores, this complexity [4], [5], [6].
The implication of epistasis from a data mining point of view is that SNPs need
to be considered jointly in learning algorithms rather than individually. Because
the mapping between the attributes and class is nonlinear, the concept difficulty
is high. The challenge of modeling attribute interactions has been previously
described [7]. Due to the combinatorial magnitude of this problem, intelligent
feature selection strategies are needed. The goal of this paper is to evaluate the
ReliefF algorithm as a statistical filter in this domain.

1.2 A Simple Example of the Concept Difficulty

Epistasis can be defined as biological or statistical [5]. Biological epistasis occurs
at the cellular level when two or more biomolecules physically interact. In con-
trast, statistical epistasis occurs at the population level and is characterized by
deviation from additivity in a linear mathematical model. Consider the follow-
ing simple example of statistical epistasis in the form of a penetrance function.
Penetrance is simply the probability (P) of disease (D) given a particular com-
bination of genotypes (G) that was inherited (i.e. P [D|G]). A single genotype
is determined by one allele (i.e. a specific DNA sequence state) inherited from
the mother and one allele inherited from the father. For most single nucleotide
polymorphisms or SNPs, only two alleles (encoded by A or a) exist in the bi-
ological population. Therefore, because the order of the alleles is unimportant,
a genotype can have one of three values: AA, Aa or aa. The model illustrated
in Table 1 is an extreme example of epistasis. Let’s assume that genotypes AA,
aa, BB, and bb have population frequencies of 0.25 while genotypes Aa and
Bb have frequencies of 0.5 (values in parentheses in Table 1). What makes this
model interesting is that disease risk is dependent on the particular combina-
tion of genotypes inherited. Individuals have a very high risk of disease if they
inherit Aa or Bb but not both (i.e. the exclusive OR function). The penetrance
for each individual genotype in this model is 0.5 and is computed by summing
the products of the genotype frequencies and penetrance values. Thus, in this
model there is no difference in disease risk for each single genotype as specified
by the single-genotype penetrance values. This model was first described by Li
and Reich [8]. Heritability or the size of the genetic effect is a function of these
penetrance values. In this model, the heritability is maximal at 1.0 because the
probability of disease is completely determined by the genotypes at these two
DNA sequence variations. This is a special case where all of the heritability is
due to epistasis. As Freitas reviews [7], this general class of problems has high
concept difficulty.
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Table 1. Penetrance values for genotypes from two SNPs

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0

Bb (0.50) 1 0 1

bb (0.25) 0 1 0

1.3 Three Data Mining Challenges

Moore and Ritchie [9] have outlined three significant challenges that must be
overcome if we are to successfully identify genetic predictors of health and dis-
ease. First, powerful data mining and machine learning methods will need to be
developed to statistically model the relationship between combinations of DNA
sequence variations and disease susceptibility. Traditional methods such as logis-
tic regression have limited power for modeling high-order nonlinear interactions
[10]. A second challenge is the selection of genetic variables or attributes that
should be included for analysis. If interactions between genes explain most of
the heritability of common diseases, then combinations of DNA sequence vari-
ations will need to be evaluated from a list of thousands of candidates. Filter
and wrapper methods will play an important role here because there are more
combinations than can be exhaustively evaluated. A third challenge is the in-
terpretation of gene-gene interaction models. Although a statistical model can
be used to identify DNA sequence variations that confer risk for disease, this
approach cannot be translated into specific prevention and treatment strategies
without interpreting the results in the context of human biology. Making etio-
logical inferences from computational models may be the most important and
the most difficult challenge of all [5].

1.4 Research Questions Addressed

The goal of the present study was to evaluate the ReliefF algorithm as a filter
method for selecting interesting SNPs prior to combinatorial modeling. Is filter-
ing a good approach for attribute selection and pre-processing? How does ReliefF
perform in this problem domain? Is ReliefF better than a näıve chi-square test
of independence that is commonly employed in genetic analysis? An additional
goal of the study was to improve upon the ReliefF algorithm for this problem
domain. Is it possible to improve the performance of ReliefF? The manuscript is
organized in the following manner. Section 2 introduces the ReliefF algorithm.
Section 3 describes our modification of ReliefF called Tuned ReliefF or TuRF.
Section 4 describes our methods for generating and analyzing artificial genetic
datasets for evaluating the ReliefF and TuRF algorithms. Section 5 summarizes
the experimental results while Section 6 provides a discussion of the results and
the study conclusions.
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2 The ReliefF Filter

There are many different statistical and computational methods for determining
the quality of attributes. Our goal is to identify those methods that are capable
of identifying attributes that predict class primarily through dependencies or
interactions with other attributes. Kira and Rendell [11] developed an algorithm
called Relief that is capable of detecting attribute dependencies. Relief estimates
the quality of attributes through a type of nearest neighbor algorithm that se-
lects neighbors (instances) from the same class and from the different class based
on the vector of values across attributes. Weights (W ) or quality estimates for
each attribute (A) are estimated based on whether the nearest neighbor (nearest
hit, H) of a randomly selected instance (R) from the same class and the nearest
neighbor from the other class (nearest miss, M) have the same or different val-
ues. This process of adjusting weights is repeated for m instances. The algorithm
produces weights for each attribute ranging from -1 (worst) to +1 (best). The
Relief pseudocode is outlined below:

set all weights W [A] = 0
for i = 1 to m do

randomly select an instance Ri

find nearest hit H and nearest miss M
for all A do

W [A] = W [A] − diff(A, Ri, H)/m + diff(A, Ri, M)/m
end for

end for

The function diff(A, I1, I2) calculates the difference between the values of the
attribute A for two instances I1 and I2. For nominal attributes such as SNPs it
is defined as:

diff(A, I1, I2) =
{

0 : genotype(A, I1) = genotype(A, I2)
1 : otherwise

The time complexity of Relief is O(m∗n∗a) where m is the number of instances
randomly sampled from a dataset with n total instances and a attributes.

Kononenko [12] improved upon Relief by choosing n nearest neighbors instead
of just one. This new ReliefF algorithm has been shown to be more robust to
noisy attributes [12], [13], [14] and is widely used in data mining applications.
Benchmarking of a C++ program for ReliefF on a 2.0 Ghz Opteron processor
with 2 GB RAM demonstrated that a dataset with 200 instances and 106 at-
tributes could be processed in approximately four minutes. Thus, this algorithm
is very fast and certainly practical for high-dimensional genetic datasets. In the
present study we evaluated the ReliefF algorithm using a neighborhood of 10
instances. We also set m to be the whole sample size.
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3 Tuned ReliefF (TuRF)

ReliefF is able to capture attribute interactions because it selects nearest neigh-
bors using the entire vector of values across all attributes. However, this ad-
vantage is also a disadvantage because the presence of many noisy attributes
can reduce the signal the algorithm is trying to capture. We propose a “tuned”
ReliefF algorithm (TuRF) that systematically removes attributes that have low
quality estimates so that the ReliefF values if the remaining attributes can be
re-estimated. The pseudocode for TuRF is outlined below:

let a be the number of attributes
for i = 1 to n do

estimate ReliefF
sort attributes
remove worst n/a attributes

end for
return last ReliefF estimate for each attribute.

The motivation behind this algorithm is that the ReliefF estimates of‘ the true
functional attributes will improve as the noisy attributes are removed from the
dataset. In the present study we evaluated the TuRF algorithm using a neigh-
borhood of 10 instances with n in the above algorithm set to 10 for an a of
1000. Thus, the 10% of worst attributes were removed at each of the i = 1 to n
iterations (TuRF 10%). We also evaluated setting n to 100 so that the worst 1%
of attributes were removed each iteration (TuRF 1%).

4 Data Simulation and Analysis

The goal of the simulation study is to generate artificial datasets with high
concept difficulty to evaluate the power of ReliefF in the domain of human
genetics. We first developed thirty-five different penetrance functions (see Section
1.2) that define a probabilistic relationship between genotype and phenotype
where susceptibility to disease is dependent on genotypes from two SNPs in the
absence of any independent effects. These thirty-five models all had heritabilities
ranging from 0.01 (small effect) to 0.4 (large effect). Each functional SNP had
two alleles with frequencies of 0.4 and 0.6. All models with full precision are
available upon request. Each of the models was used to generate 100 replicate
datasets with sample sizes of 200, 400, 800, 1600 and 3200. This range of sample
sizes represents a spectrum that is consistent with small to medium size genetic
studies. Each dataset consisted of an equal number of cases (sick) and controls
(healthy). ReliefF, TuRF 10%, TuRF 1% and chi-square were applied to each
of the datasets. The 1000 SNPs were sorted and the top 50, 100, 150, 200, 250,
300, 350, 400, 450, and 500 SNPs out of 1000 were selected. From each subset
we counted the number of times the two functional SNPs were selected out of
each set of 100 replicates. This proportion is an estimate of the power or how
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likely we are to find the true SNPs if they exist in the dataset. The number of
times each method found the correct two SNPs was statistically compared. A
difference in counts (i.e. power) was considered statistically significant at a type
I error rate of 0.05.

5 Experimental Results

We find that the power of ReliefF to pick (filter) the correct two functional SNPs
or attributes was consistently better (P ≤ 0.05) than a näıve chi-square test of
independence across subset sizes and models when the sample size was 800 or
larger. These results suggest that ReliefF is capable of identifying interacting
SNPs with a small to moderate genetic effect size in moderate sample sizes.
Figure 1 summarizes the average power of chi-square (circles) and ReliefF (tri-
angles). Each point in the plot is an average across the five models used in the
simulation. For all sample sizes, the power of ReliefF improves with increasing
SNP subset size much more rapidly than the power of chi-square, and this gap
between the two methods widens significantly as the sample size is increased.

Next we compared the power of TuRF 10 % and TuRF 1% to the power of
ReliefF. We find that the TuRF algorithm was consistently better (P ≤ 0.05)
than ReliefF across small SNP subset sizes (50, 100, and 150) Figure 1 summa-
rizes the average power of ReliefF (triangles), TuRF 10% (+s) and TuRF 1%
(Xs). Each point in the plot is an average across the five models used in the
simulation. The power of the two methods asymptotically approach one another
for larger SNP subset size. As the sample size increases, the advantage of TuRF
becomes most apparent at 1600 subjects, a sample size achieved in many ge-
netic epidemiological studies. At these larger sample sizes, TuRF is better able
to filter the functional, interacting SNPs for a moderate subset size, making it
well suited as a filter. Note that the TuRF algorithm that removed 1% of worst
attributes each iteration consistently performed better than the TuRF algorithm
that removed 10% each time.

6 Discussion

Human genetics is transitioning away from the traditional approach of studying
one gene at a time to a genome-wide approach that uses emerging chip-based
technologies to measure thousands of DNA sequence variations across the hu-
man genome. The rationale for this latter approach is that it is unbiased and no
assumptions need to be made about which genes might be involved in the disease
process. Given we have incomplete knowledge about gene function, this seems
like a reasonable approach. Regardless, the technology is now available and will
result in an information explosion over the next few years. The advantage of
the genome-wide approach is that we now have much of the necessary informa-
tion in hand to identify disease susceptibility genes. The disadvantage is that the
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Fig. 1. Comparison of chi-sqaure (circles), ReliefF (triangles) TuRF 10% (+s) and
TuRF 1% (Xs) for filtering SNPs. The x-axis of each plot indicates the number of
SNPs (50 to 500) filtered. The y-axis of each plot indicates the power (0 to 100).

statistical and computational methods are not yet ready to find those genes that
impact disease susceptibility primarily though complex interactions with other
genes and with environmental exposures.
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There are two important data mining issues that need to be addressed if we
are to be successful in our endeavor to identify and characterize complex genetic
effects from among 1000 or more attributes. First, we need classifiers that are able
to model the nonlinearity in the relationship between the attributes and disease
class. Some progress has been made in this domain using feature construction
and classification methods such as multifactor dimensionality reduction (MDR)
[15], [16], [17] [18], [19], [20]. Second, we need both filter and wrapper strategies
that can be combined with methods such as MDR in the context of genome-wide
datasets [21], [22], [23]. The goal of the present study was to evaluate and improve
upon ReliefF for selecting a subset of attributes that can then be exhaustively
modeled using a classifier.

The main conclusion of this study is that the ReliefF algorithm is able to
identify nonlinear attribute dependencies in genome-wide datasets. We showed
that ReliefF has better power than a näıve or myopic chi-square test of indepen-
dence across a range of sample sizes. While this was encouraging, it was clear
that ReliefF was not perfect. In fact, the power of ReliefF only approached a
reasonable level (80%) in the largest datasets when nearly 500 attributes were
being selected out of the 1000. It is well known that the power of ReliefF is
significantly impacted by the number of noisy attributes and the number of in-
stances in the dataset [13]. This is because ReliefF looks at the entire vector of
attributes when estimating the quality of each individual attribute. As a result,
the algorithm is very sensitive to the context that the functional attributes find
themselves in.

Can ReliefF be improved? A number of different ReliefF algorithms have
been proposed, each with a different motivation. For example, RReliefF [13]
was developed specifically for regression problems. Selective Sampling ReliefF
was developed to reduce the time complexity by using kd-trees to select the
most informative set of instances [24]. Our goal here was to improve ReliefF
by systematically removing attributes with the worst weights followed by re-
estimating of the weights for the remaining attributes. The reasoning is that
the signal should improve by removing those attributes that are most likely to
be noise. The results of our simulation study demonstrate that our new Tuned
ReliefF (TuRF) algorithm is significantly better than ReliefF. In fact, the TuRF
algorithm had greater than 80% power to pick the correct two interacting SNPs
in a subset of only 50 out of 1000 attributes. ReliefF had less than 50% power.

We conclude that the Relief family of algorithms is suitable for genome-
wide genetic analysis. While these algorithms are not perfect, they are very
capable of identifying nonlinear gene-gene interactions even in the presence
of hundreds of noisy SNPs. The next step is to explore the power of these
methods across a wide range of different genetic models, effect sizes, allele fre-
quencies, and sample sizes. We anticipate ReliefF will play an important role
in data mining strategies in the domain of human genetics. Indeed, ReliefF
is already included in the open-source multifactor dimensionality reduction
(MDR) software package (www.epistasis.org/mdr.html) that was designed
specifically for detecting gene-gene interactions. The availability of Relief
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algorithms in the MDR software package and others such as Weka [25] opens the
door to routine use of this powerful algorithm in the human genetics
research community.
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Abstract. MicroRNAs (miRNAs) form a large functional family of small 
noncoding RNAs and play an important role as posttranscriptional regulators, by 
repressing the translation of mRNAs.  Recently, the processing mechanism of 
miRNAs has been reported to involve Drosha/DGCR8 complex and Dicer, 
however, the exact mechanism and molecular principle are still unknown. We 
thus have tried to understand the related phenomena in terms of the tertiary 
structure of pre-miRNA. Unfortunately, the tertiary structure of RNA double 
helix has not been studied sufficiently compared to that of DNA double helix. 
The tertiary structure of pre-miRNA double helix is determined by 15 types of 
dinucleotide step (d-step) parameters for three classes of angles, i.e., twist, roll, 
and tilt. In this study, we estimate the 45 d-step parameters (15 types by 3 classes) 
using an evolutionary algorithm, under several assumptions inferred from the 
literature. Considering the trade-off among the four objective functions in our 
study, we deployed a multi-objective evolutionary algorithm, NSGA-II, to the 
search for a nondominant set of parameters. The performance of our method was 
evaluated on a separate test dataset. Our study provides a novel approach to 
understanding the processing mechanism of pre-miRNAs with respect to their 
tertiary structure and would be helpful for developing a comprehensible 
prediction method for pre-miRNA and mature miRNA structures.  

1   Introduction 

The tertiary structure of RNAs is deeply related with their processing and functions, 
and knowing it helps to resolve their binding mechanisms with other molecules in cells. 
It can be described by several angle parameters, such as twist, roll, and tilt. However, 
the tertiary structure of RNA has not been studied much yet, compared to the secondary 
structure [1] or the tertiary structure of DNA [2]. Crystallography methods facilitated 
the elucidation of the structural parameters of DNA double helix [2, 3]. 

Recently, the known functional range of RNA has been expanded gradually since a 
new posttranscriptional regulator, (i.e., the microRNA (miRNA)), was found [10]. 
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miRNAs are defined as single-stranded RNAs of ~22 nucleotides (nt) in length, 
generated from endogenous transcripts that can form local hairpin structures [11]. 
The local hairpin structures are processed by the nuclear RNase type III enzyme, 
Drosha, releasing the hairpin-shaped intermediates (pre-miRNAs) which are 
typically 60-70 nt [12]. After exported to the cytoplasm, the pre-miRNAs are cleaved 
by another RNase III type enzyme Dicer and then are processed into the miRNAs 
[13]. However, the structural mechanism associated to the recognition and processing 
of pre-miRNA still remains unknown. Elucidation of the structural mechanism is one 
of the most crucial problems towards the understanding of molecular basis of miRNA 
processing. In a recent report on the structural mechanism, it is shown that the 
cleavage site by Drosha is distant from a terminal loop by about two-turn helices[14]. 
This biological knowledge can be used for the parameterization of tertiary structure 
of pre-miRNA. 

The parameterization of tertiary structure is a computationally intensive work 
involving a large number of parameters and several objectives. Conventional 
approaches to the parameterization include iterative algorithms and weighted linear 
sum methods. Iterative methods optimize each of the objectives one by one until a 
self-consistent state has been reached [4]. Weighted linear sum methods address the 
multiple objective problem by choosing suitable weighting parameters between 
objectives [5]. However, the choice of weighting parameters for different objectives 
becomes another challenging problem when the different objectives are dependent on 
each other. In this case, a priori knowledge about the dependency structure is needed 
for finding suitable weight values. 

An alternative method is to adopt a multi-objective optimization algorithm where all 
objectives are simultaneously optimized. Multi-objective optimization algorithms have 
widely been applied to the problems where the trade-off relation (dependency) among 
the objectives exists [6-8]. They produce not a single parameter set but a variety of 
parameter sets with various trade-offs for the objective functions. Multi-objective 
optimization algorithms find the optimal solution by comparing the candidate solutions 
based on the dominance relationship. When comparing two solutions with respect to 
the dominance relationship, the fitness value of each objective is considered together. 
Therefore, there is no information distortion in the multi-objective optimization 
algorithm, whereas the weighted linear sum method inevitably distorts some 
information while summarizing the individual fitness values  [9]. 

We introduce a novel approach for the parameterization of pre-miRNA structure 
using multi-objective evolutionary algorithms (MOEAs). In our knowledge, there has 
been no reported research on the parameterization of pre-miRNAs in terms of their 
tertiary structure. In specific, we focus on the dinucleotide step (d-step) parameters of 
double helix structure of pre-miRNA. Results of this study may help to understand the 
mechanism as well as can be used as an integral part for the prediction of pre-miRNAs. 
This paper largely consists of three parts; the first section describes the implementation 
of MOEAs for the parameterization of RNA tertiary structure; the second part 
demonstrates the results of a case study about pre-miRNAs; discussion and future work 
are given in the last part. 
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2   Materials and Methods 

2.1   Tertiary Structure of RNA 

The double helix structure of RNA is determined by three angle parameters; twist (W), 
roll (R), and tilt (T) as described in Figure 1. Twist is a main angle of the helix structure 
and decides whether it is left-handed or right-handed (Figure 1(b)). Roll is a rotation 
angle bending along the main groove and a minor groove, and it opens the grooves 
(Figure 1(c)). Tilt is a rotation angle where a plane of base pair moves up and down, and 
it destabilizes the stacking energy (Figure 1(d)). The angle parameters determine the 
position of each base and backbone in three dimensional spaces. They are basically 
 

(d)(c) (b) 
’

’’

’

(a) 

 

Fig. 1. The angle parameters of RNA tertiary structure. (a) The double helix structure of RNA; 
(b) Twist; (c) Roll; (d) Tilt. The rhombus denotes the plane of base pair. 

defined with dinucleotide step (d-step) parameters, as described in the following. Here, 
we can define three net angles as described in Equations (1)~(3) [15]. Net twist (

jW
~ ) is 

the cumulative twist from the first to the last d-step (L d-steps) of the jth example.  Net 
roll (

jR
~ ) and net tilt (
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~ ) are the cumulative angles from the first to the last d-step of the 

jth example. 
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where iW , iT , and iR are d-step parameters for twist, tilt, and roll angles, respectively. 

2.2   RNA Dinucleotide Step 

The secondary structure of a single RNA sequence can be predicted using the nearest 
neighbor model [16]. It considers thermodynamic interaction between base pair i and 
i+1, called dinucleotide step (d-step). Here, each d-step has three tertiary structural 
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Fig. 2. The net twist of 
pre-miRNA  

parameters: twist, roll, and tilt angles. The d-steps can be classified into the three types 
according to bases’ tendency or effect over geometric space. In this study, we use the 
following ten d-steps. 

 
- Pyrimidine(Py) – Purin(Pr) steps: UA(UA), CA(UG), CG(CG) 
- Pr – Py steps: AA(UU), AG(CU), GA(UC), GG(CC) 
- Pr – Pr steps: AU(AU), GU(AC), GC(GC) 

 

Here, the complement pair of a dinucleotide step is given in parentheses. Also, we need 
the following five additional d-steps for insertion or deletion. They represent an internal 
bulge in RNA structure. 

        
- -A(U-), -G(C-), -U(A-), -C(G-), -- 

 

Here, ‘-’ denotes deletion. To summarize, we have to consider 15 d-steps for each angle 
parameter (twist, roll, and tilt) and thus we should search for the 45 d-steps parameter 
values (15 d-steps by 3 angle classes). 

2.3   Description of the Objective Functions 

Here we present the four objective functions used to 
search for the optimal d-step parameters of double 
helix structure of pre-miRNA. For the optimization of 
the d-step parameters, we exploit some prior 
knowledge, which is specific to the pre-miRNAs. 
Since the same preprocessing mechanism is applied to 
all pre-miRNAs, their tertiary structures should be 
similar. The first function restricts the net twist should 
be similar across all miRNAs and the second implies 
the sense-antisense pair should have similar twist values. The third and fourth denotes 
that the net roll values and the net tilt values should be similar for all examples. All 
objective functions should be minimized here.  

2.3.1   Twist: Mean of Difference and Standard Error  
All net twists from a Drosha cleavage site to a Dicer cleavage site should be similar to 
be cropped by the same processing mechanism. A previous experiment reported that 
the net twist is about two-turn helices (4π) as depicted in Figure 2 [14]. Based on this, 
we can define the first objective function, which minimizes the difference from 4π and 
the standard errors of the net twists. If there are N pre-miRNAs, the mean of difference 
(MOD) and the standard error of the net twists are defined as: 
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where c
jW

~ is the net twist of the jth pre-miRNA calculated by a set of d-step parameters, 

C. From Equations 4 and 5, the first objective function can be defined as follow:  

WSEMODf +=1                                      (6) 

Here, WSE  was added because the net twist should be uniformly distributed around 

the two-turn helices. 

2.3.2   Twist: Mean of Difference Between Both Strands 
The stem structure of RNA is bi-directional: (1) from the stem-end of the mature 
miRNA to the loop-end of the mature miRNA and (2) vice versa. Thus, there are two 
net twists for a sense and an antisense strand, on a stem structure of pre-miRNAs. Here, 
a tuple ),( C

j
C
j SS specifies the net twists of the sense and antisense strands of the jth 

pre-miRNA calculated by a set of d-step parameters, C. We can assume that there is no 
difference of the net twists between both strands. Hence, we can define the second 
objective function 

2f  using the mean of difference between both strands (MDS). 
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2.3.3   Roll: Standard Error of Net Rolls 
The third objective function is designed to minimize the standard error of net rolls. The 
standard error of net rolls is defined as follow: 
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where, c
jR

~
 is the net roll of jth pre-miRNA calculated by a set of d-step parameters, C. 

2.3.4   Tilt: Standard Error of Net Tilts 
The last objective function minimizes the standard error of net tilts. The standard error 
of net tilts is defined as follow: 
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where c
jT

~
 is the net roll of the jth pre-miRNA calculated by a set of d-step parameters, C. 

2.4   Multi-objective Optimization 

A multi-objective optimization is to find a set of decision vectors ∗x  which minimize 
(or maximize) m objective vectors (functions) )(xf  at the same time. 
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))((minarg xfx
x

=∗                 (10) 

( ))(),...,(),()( 21 xfxfxfxf m= ,                       (11) 

where )(xf i
s are objective functions.  The decision vector (parameters) x  consists of n 

real values ( )nxxx ,...,, 21
 belong to the feasible region nS ℜ⊂  [8]. 

MOEAs find the optimal decision vectors, exploiting the dominance relationship for 
comparing the candidate solutions, not integrating the individual objective functions as 
a single function. The dominance relationship can be defined as follows [6].  

)()(},,...,2,1{ 21 xfxfmi ii ≤∈∀                                  (12) 

)()(},,...,2,1{ 21 xfxfmi ii <∈∃                                   (13) 

If a decision vector 1x  is not worse than 2x across all the objective functions, 1x  is 

said to dominate 2x . If there is no dominance between the decision vectors, they are 

said to be non-dominated each other. If a decision vector, 1x  is not dominated by all 

other decision vectors in the whole search space, the vector is defined as Pareto-optimal 
solution [6]. The non-dominated set of the entire search space is the Pareto-optimal set. 
The Pareto-optimal set in the objective space is called the Pareto-optimal front. 

2.5   Implementation of the MOEA 

We used non-dominated sorting genetic algorithm (NSGA-II), one of the most popular 
MOEAs, for the optimization of our d-step parameters [6]. NSGA-II can handle a number 
of objectives through ranking by non-dominated sorting procedure (Figure 3(a-1)).  
 

else

if (|Parent(t)| + |front(k)| > N) {

do

do

while 

while

t=0
initialize P(t)
Parent(t) = ()
Q(t) = ()
evaluate P(t)

(       termination-condition) {
n = non-dominated-sort P(t) (1)
for (k=1; k<n+1; k++) {

C(t) = select the least crowded front(k)  (2)
Parent(t) = Parent(t) + C(t) }

Parent(t) = Parent(t) + front(k)
}

(|Q(t)| < M) { (3)
(p1, p2) = tournament-selection Parent(t)
Q(t) = Q(t) + cross-overand mutate (p1, p2)

}
t=t+1
P(t) = P(t) + front(1) (4)
P(t) = Parent(t-1) + Q(t-1)
evaluate P(t)

}

Pre-miRNA sequence data

Secondary structure data

mfold

Pareto-set of d-step 
parameters

Tertiary structure prediction
using chosen d-step

parameters

NSGA-II

Selection by

export

g--uggu----ggu
ucggccgagucucg

c-caggu--g-ggu
gcggccgagucucg

...

(a) (b)

 not

 

Fig. 3. (a) Pseudo-code of the implemented NSGA-II, (1) creates n fronts; (2) produces parents of 
size N; (3) reproduce daughters of size M; (4) elitism strategy. (b) Flow chart for tertiary structure 
prediction using d-step parameters optimized by evolutionary algorithm. 
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It has shown good convergence and diversity performance on various problem domains. 
The crowding distance measure in NSGA-II overcomes a drawback of deciding the 
sharing parameter in the previous NSGA (Figure 3(a-2)). To handle multiple objectives 
more efficiently, we used the NSGA-II with the elitism strategy (Figure 3(a-4)). The 
entire NSGA-II procedure is summarized in Figure 3(a). 

3   Results  

3.1   Case Study: Pre-miRNAs 

For the d-step parameterization of pre-miRNA, we used 38 pre-miRNA sequence data 
where the cleavage site by Drosha/DGCR8 complex is experimentally validated by 
Northern blotting (http://microrna.sanger.ac.uk/). To extract d-steps of pre-miRNAs, 
their secondary structures should be known. Here, we applied the mfold package 
(http://ww.bioinfo.rpi.edu/applications/mfold) for the prediction of secondary 
structures, and converted the results as pairwise type (Figure 3(b)). We also prepared 
20 independent test examples using the same method. The proposed d-step parameter 
learning procedure is summarized in Figure 3(b). 

3.2   Experimental Setting 

To find the optimal parameters of dinucleotide steps using NSGA-II, we set several 
running parameter values as follows. Population size and the number of maximum 
generation were set to 1000, respectively. As genetic operators, we used the uniform 
 

 

Fig. 4. The relation between the fitness functions. Each graph shows the distribution of total front 
set of all functions on the pair of functions. The black dots are the front set of function f1 and 
function f2. The gray dots are all front set for all functions. 
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crossover and 1-point mutation. The rate of crossover was set as 0.9 and the rate of 
mutation was one over 45, which is the number of total d-step parameters. A 
chromosome consists of a string with real values of the 45 d-step parameters 
corresponding to the 3 tertiary structure parameters for each 15 d-steps. 

To reduce the search space, we imposed several constraints on the range of each 
angle (twist, roll, and tilt). For the range values, the angles discovered in DNA double 
helix were referred to. The twist of d-steps not including deletion is from 20° to 45° and 
the twist of d-steps including deletion is from 0° to 45°. Roll is from -10° to 10° and tilt 
is from -5° to 5°. 

3.3   The Relation Among the Objectives 

Given the running parameter set, we searched for the total front set for all given 
functions from f1 to f4. Figure 4 represents the total front set, a non-dominated set for 
four functions, which are plotted between pairs of functions. In the results, all pairs of 
functions excluding the pair of functions f3 and f4 show the trade-off relationship. 
However, the function pair f3 and f4 shows a liner relationship, which is reasonable 
because net roll and tilt are dependent on each other as in Equations 2 and 3. 

Among the total front set, we wished to select several sets that are appropriate for 
our specific purpose. In this study, we focused the twist angle because it is a main 
contributor of the RNA tertiary structure and thus we first selected the front set 
determined by functions f1 and f2 (black dots in Figure 4). They included 227 parameter 
sets. Next, we chose eight parameter sets in a specific range where the fitness value of 
function f1 is under 100 and the fitness value of function f2 is under 5 (a small dotted 
rectangle in the upper left plot in Figure 4). 

3.4   Learned Results 

The fitness values of the eight selected parameter sets are given in Table 1. Table 
1(a) describes the fitness values for the training dataset and Table 1(b) for the test 
dataset. We concluded that the front sets were optimized well with the given 
objective functions from the fact that the result on the test dataset is similar to that on 
the training dataset. 

Table 1. The fitness values of each selected front members for training and test datasets 

f1 f2 f3 f4

1  72.4  4.7  38.3 25.5 
2  72.1  4.9  39.7 24.7 
3  93.4  4.2  10.2 13.0 
4  76.2  4.3  32.1 24.0 
5  93.3  4.2  10.3 13.0 
6  94.2  4.1  10.2 12.8 
7  95.0  3.8  10.1 13.4 
8  73.0  4.4  35.0 27.2 

f1 f2 f3 f4

1 82.5 7.1 28.6 21.4 
2 83.7 7.7 32.6 18.5 
3 82.3 4.1 17.5 14.3 
4 90.9 6.0 30.8 20.9 
5 82.5 4.0 17.5 14.4 
6 82.2 4.2 17.2 14.2 
7 80.0 4.2 17.5 14.7 
8 82.4 6.8 30.4 20.0 

(a) Fitness values for the training dataset (b) Fitness values for the test dataset>  
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Table 2. The d-step parameter sets of DNA (*) and pre-miRNA. Row is the first nucleotide step 
and column is the second nucleotide step. 

Purine Pyrimidine Deletion 
A A* G G* U T* C C* - 

W 34.8 40.0  
R 7.2 2.6  T
T 4.8 0.0  
W 32.7 36.9 35.0 31.1
R 6.5 1.1 6.1 6.6

Pyrim
idine C

T -1.6 0.6 5.0 0.0
W 35.9 35.8 32.9 30.5 34.0 33.4  
R 6.8 0.5 0.6 2.9 10.0 -0.6  A
T 3.7 -0.4 3.3 -2.0 -0.1 0.0
W 34.9 39.3 34.9 33.4 34.3 35.8 37.6 38.3 
R 9.6 -0.1 10.0 6.5 9.5 0.4 10.0 -0.7

Purine

G
T 5.0 -0.4 4.2 -1.1 4.6 -0.9 2.8 0.0  
W 31.4 35.8 34.6 29.8 34.8
R 9.4 10.0 6.1 -10.0 9.4

D
eletion 

-
T 5.0 4.7 4.7 3.9 3.5  

3.5   The Representative Parameter Set 

Among the eight front parameter sets, we selected a representative parameter set (the 
fifth parameter set in Table 1) for comparing with the parameter set of DNA, estimated 
by the crystallography experiment (Table 2). Table 2 demonstrates the 45 d-step 
parameters of pre-miRNA and the 30 d-step parameters of DNA. It should be noted that 
there are no deletions in the structure of DNA double-helices and their physical and 
chemical characteristics are different from those of pre-miRNAs. Nevertheless, several 
parameters of pre-miRNA have similar values to those of DNA. 

3.6   Twist Change of Pre-miRNAs 

We drew the twist of pre-miRNAs using the fifth parameter set of Table 2 in the 
secondary dimension using a sine function (Figure 5). Figure 5(a) displays the twist 
change for 38 training examples and Figure 5(b) shows the twist change of 20 test 
examples. The net twists of the training are about 4.1π around 2-turn helices. In both 
datasets, the variance of net twists increases as the bp-step increases. We guessed that 
the difference may result from the consecutive deletions after the 10th d-step. For 
 

(a) 

(b) 

 

Fig. 5. Twist angles of the training and test datasets calculated using the fifth front parameter set. 
(a) Twist angles of the training examples (b) Twist angles of the test examples. 
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example, because ‘-A(A-)’ or ‘-C(C-)’ d-steps have relatively smaller angles than 
others, their consecutive d-steps will make more difference among twist angles of 
examples. 

4   Discussion  

In this study, we suggested an approach to the parameterization of pre-miRNAs using 
multi-objective evolutionary algorithms (MOEAs). In specific, we optimized the d-step 
parameters for twist, roll, and tilt angles, needed for predicting the tertiary structure of 
double helix of pre-miRNA, by introducing four fitness functions. The d-step 
parameter set of a representative front member had realistic values and shared similar 
patterns with that of DNA double helix. Also the results on the test dataset were 
consistent with those on the training dataset with respect to the fitness value and twist 
change. Combining these, our method has shown to be an effective tool for finding the 
Pareto-optimal front for this problem. 

Multi-objective evolutionary algorithms search for a front, non-dominated optimal 
set, for given functions. Thus, we should determine the representative results among 
non-dominated optimal sets in the front.  In this study, we mainly focused on the twist 
angle, a major component of tertiary structure, when choosing a representative front 
parameter set from the total front sets. 

The tertiary structure of a double-stranded RNA is determined by coordinates in the 
three dimensional space originated form the twist, roll, and tilt angles. In the future 
work, we will analyze the characteristics of pre-miRNAs on the tertiary structure and 
investigate the association with the processing mechanism of Drosha/DGCR8 and 
Dicer RNase III type enzymes. As a matter of fact, binding of proteins or complexes to 
the DNA or RNA double helices causes conformational changes. The d-step 
parameters should also be changed by physical or chemical effects of the protein. 
Hence, dynamic conformational changes can cause difficulties in finding the optimal 
d-step parameter set. Mitigating the above problem would be another research 
direction. 

Successful improvement of our study may help to understand the processing 
mechanism of pre-miRNAs as well as to be used as a crucial feature for the prediction 
of pre-miRNAs and mature miRNAs, which is one of the most challenging problems in 
miRNA study. These results can also be useful for designing an artificial short hairpin 
RNA as RNA interference system. 
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Abstract. Knowledge of protein-protein interaction sites is vital to de-
termine proteins’ function and involvement in different pathways. Sup-
port Vector Machines (SVM) have been proposed over the recent years
to predict protein-protein interface residues, primarily based on single
amino acid sequence inputs. We investigate the features of amino acids
that can be best used with SVM for predicting residues at protein-
protein interfaces. The optimal feature set was derived from investigation
into features such as amino acid composition, hydrophobic characters of
amino acids, secondary structure propensity of amino acids, accessible
surface areas, and evolutionary information generated by PSI-BLAST
profiles. Using a backward elimination procedure, amino acid composi-
tion, accessible surface areas, and evolutionary information generated by
PSI-BLAST profiles gave the best performance. The present approach
achieved overall prediction accuracy of 74.2% for 77 individulal proteins
collected from the Protein Data Bank, which is better than the previ-
ously reported accuracies.

1 Introduction

The knowledge of protein-protein interaction is valuable for understanding mech-
anisms of diseases of living organisms and for facilitating discovery of new drugs.
The identification of interface residues has many applications such as drug de-
sign, protein mimetic engineering, elucidation of molecular pathways [1,2], and
understanding of disease mechanisms [3]. Proper identification of the residues
at interfaces helps guiding of the processes of docking to build the structural
models of protein-protein complexes [4].

Many computational techniques are available in the literature to predict
protein-protein interface residues based on different characteristics of known
protein-protein interaction sites [4,5,6,7,8,9]. Neural networks use residues in
a local neighborhood or a window as inputs to predict protein-protein inter-
face residues at a particular location of an amino acid sequence by finding an
appropriate non-linear mapping. Protein-protein interaction sites are predicted
from a neural network with sequence profiles of neighboring residues and solvent

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 187–196, 2007.
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exposures as inputs [6]. Fariselli et al. implemented a neural network method
for predicting protein-protein interaction sites based on the information of evo-
lutionary conservation and surface disposition [7]. Ofran and Rost proposed a
neural network to predict interaction sites from local sequence information [8].
Chen and Zhou introduced a consensus neural network that combines predic-
tions from multiple models with different levels of accuracy and coverage [4].
Input information derived from single sequences has been used by support vec-
tor machine (SVM) for predicting protein-protein interface residues [9]. Recently,
Yan et al. proposed a two-stage classifier consisting of an SVM and a Bayesian
network classifier that identifies interface residues primarily on the basis of se-
quence information [5].

Despite the existence of many approaches, the current success rates of exist-
ing approaches to protein-protein interface residue prediction are insufficient for
practical applications; further improvement of the accuracy is necessary. Most
of the existing techniques use conventional orthogonal encoding or information
derived directly from amino acid sequences as inputs to predict protein-protein
interaction residues. The biochemical properties of each amino acid residue have
not exploited systematically in the prediction.

In this paper, we investigate into various features of amino acids previously
used by various researchers and select the optimal combination to predict the
residues at protein-protein interactions by using SVM which has a strong foun-
dation in statistical learning theory [10]; its generalization capability is optimal
compared to other statistical or machine learning methods in solving many bio-
logical problems [11]. SVMs are powerful and generally applicable tools in pre-
dicting protein secondary structure [12,13,14], relative solvent accessibility [15],
accessible surface areas of amino acids [16], and cancer classification [17,18].
Apart from amino acid composition, we investigate hydrophobic characters of
amino acids [19], secondary structure propensity of amino acids [20], accessible
surface areas [16], and the evolutionary information generated by PSI-BLAST
profiles into an encoding schema. We begin with all known features and reduce
using a backward elimination procedure to find the optimal features.

The present approach achieves a substantial improvement of the prediction
accuracy from 2.2% to 8.2% on a dataset of 77 individulal proteins collected
from the Protein Data Bank compared to the previously reported best predic-
tion accuracies with SVM methods [5,9]. Results of our experiments with the
proposed encoding schema confirmed that the accessible surface areas and the
evolutionary information of amino acids along the sequences can detect different
sequence features to enhance the accuracy of protein-protein interaction residue
prediction.

2 Feature Selection

The protein sequences are converted into feature vectors constructed from amino
acid composition, hydrophobic characters of amino acids, secondary structure pro-
pensity of amino acids, accessible surface areas, and the evolutionary information
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generated by PSI-BLAST profiles. The backward stepwise selection is used for fea-
ture selection. We start with the full model of features and sequentially delete pre-
dictors by dropping of the features, which entrances the prediction accuracy.

Let us denote the given protein sequence by r = (r1, r2, . . . , rm) where ri ∈
ΩR = {L, V, I, M, C, A, G, S, T, P, F, Y, W, E, D, N, Q, K, R, H} is the set of 20
amino acid residues, and a = (a1, a2, . . . , am) denotes the corresponding protein-
protein interface sequence where ai ∈ ΓA = {N, I}; N is non-interface residue
and I is interface residue; m is the length of the sequence. The prediction of
the protein-protein interface sequence, a, from an amino acid sequence, r, is the
problem of finding an optimal mapping from the space of Ωm

R to the space of Γ m
A .

2.1 Amino Acid Composition

Given the protein, the amino acid composition is the fraction of each amino acid.
The fraction fr of amino acid r ∈ ΩR in the protein sequence r is given by

fr =
1
m

m∑

i=1

δ(ri = r) (1)

where the Kronecker delta δ is one when the argument satisfies otherwise zero.

2.2 Hydrophobic Characters

In protein folding, polar residues prefer to stay outside the protein to prevent
non-polar residues from exposing to polar solvent molecules, such as water mole-
cules. The interactions between non-polar residue side chains are called to be
hydrophobic interactions. The Kyte and Doolittles (K-D) method [19] is used to
calculate the parameter of hydrophobic characters of the 20 amino acid residues.
The hydrophobic character parameters of the 20 amino acid residues obtained
by K-D method are [20]: (I, 4.5), (V, 4,2), (L, 3.8), (F, 2.8), (C, 2.5), (M, 1.9),
(A, 1.8), (G, 0.4), (T, -0.7), (S, -0.8), (W, -0.9), (Y, -1.3), (P, -1.6), (H, -3.2),
(E, -3.5), (N, -3.5), (Q, -3.5), (N, -3.5), (K, -3.9), (R, 4.0).

2.3 Secondary Structure Propensity

The secondary structure propensity characterizes the conformation propensity
factor of α-helix, β-strand, and coil of the corresponding amino acid residue.
The conformation parameters for each amino acid Prt, where r ∈ ΩR and t ∈
ΩT = {H, E, C}; H, E, and C denote the secondary structure elements α-helix,
β-strand, and coil respectively, are calculated as follow:

Prt =
lrt

lt
(2)

where lt is the score of all of the amino acid residues whose secondary structure
has the conformation t and lrt is the corresponding score of all amino acid residue
r having conformation t.
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2.4 Accessible Surface Areas

Information of accessible surface areas (ASA) directly reflects the degree to which
the residues are in contact with the solvent molecules. The results of prediction
of ASA have a significant impact in determining interacting residues in proteins
and the prediction of protein-protein interactions [16]. The ASA values of the
amino acids are derived from using a two-stage support vector regression [16].

2.5 Evolutionary Information Generated by PSI-BLAST Profiles

The PSI-BLAST profiles contain useful information to display correlations be-
tween hidden patterns of substitutions of amino acids in similar proteins and
similar structures [21]. Firstly, the values of raw matrices of PSI-BLAST [22]
are obtained from NR (Non-Redundant) or SWISS-PROT databases. The low-
complexity regions, transmembrane regions, and coil-coil segments are then
filtered from these databases by PFILT program [21]. Finally, the E-value thresh-
old of 0.001, three iterations, BLOSUM62 matrix, a gap open penalty of 11, a
gap extended penalty of 1 are used for searching the non-redundant sequence
database to generate position specific scoring matrix (PSSM) profiles [21].

3 SVM Approach for Predicting Protein-Protein
Interface Residues

Let vi = (vi1, vi2, . . . , vik) be the vector representing coding of features of the
residue ri where k denotes the number of selected features. Let the input pattern
to SVM at site i be ri = (vi−h,vi−h+1, . . . ,vi, . . . ,vi+h) where vi denotes the
center element, h denotes the width of window of input residues on one side;
w = 2h + 1 is the width of the neighborhood around the element i. Fig. 1
represents the architecture of SVM approach for the prediction of protein-protein
interface residues.

In our SVM approach, the classifier N/I maps the examples of class N to -1
and the examples of class I to +1. The input vectors, derived from a window of
w amino acid residues, are transformed to a hidden-space and compared to the
support vectors via a kernel function of each classifier [10]. The results are then
linearly combined by using parameters αi, i = 1, 2, . . . , n where n is the number
of training exemplars, that are found by solving a quadratic optimization prob-
lem. The process of training of each classifier N/I is illustrated in the algorithm I:

Algorithm I: Classifier N/I
Inputs: Training set {(ri, qi) : qi ∈ {+1, −1}, i = 1, . . . , n}
Maximize over αi:
Q =

∑n
i=1 αi − (1/2)

∑n
i=1

∑n
j=1 αiαjqiqjK(ri, rj)

subject to
0 ≤ αi ≤ γ and

∑n
i=1 αiqi = 0

Outputs: Parameters αi
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Input: amino acid sequence

Support Vector Machines

Output: sequence of interfaces and non-interface residues

ri

    v . . .v    . . . v    v  v  v   v    . . v    . . . v  1  i-h i-2 i-1 i i+1 i+2 i+h m

           r  r  . . . r    r   r  r    r     . . . r    r  1  2 i-2 i-1 i i+1 i+2 m-1 m

Feature Selection

2h + 1

           f(ri) = w (ri)+bφ

   a  a  . . . a    a   a a    a     . . . a    a  1 2 i-2 i-1 i i+1 i+2 m-1 m

Fig. 1. SVM approach for protein-protein interface residue prediction

Whenthe cost functionQ is optimized, algorithmIyields a classifier forN/I with
maximum margin of separation [10]: the summations of the maximizing function
Q run over all training patterns; K(ri, rj) = φ(ri)φ(rj) denotes the kernel function
where φ is a mapping used to convert input vectors ri into a high dimensional space;
qi encodes the protein-protein interface such that the output is a binary value; -1 if
the protein-protein interface of the residue ri is N or+1 if the protein-protein inter-
face is I. γ is a positive constant used to decide the trade-off between the training
error and the margin between the two classes. Once the parameters αi are obtained
from the above algorithm, the resulting discriminant function is known.

The resulting discriminant function f of a test vector rj of the above classifier
is given by

f(rj) =
n∑

i=1

qiαiK(ri, rj) + b = wφ(rj) + b (3)

where the bias b is chosen so that qif(ri) = 1 for any i with 0 < αi < γ and the
weight vector w =

∑n
i=1 qiαiφ(ri).

The protein-protein interface aj corresponding to the residue rj is deter-
mined by

aj =
{

I if f(rj) ≥ 0;
N otherwise. (4)

4 Experiments and Results

4.1 Dataset

Firstly, the individual proteins from a set of 70 protein-protein heterocomplexes
in the study of Chakrabarti and Janin [23] were used. A dataset of 77 individual
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proteins with sequence identity < 30% was subsequently obtained after removing
redundant proteins and molecules, consisting of fewer than 10 residues [5]. Ac-
cording to the scheme of Chakrabarti and Janin [23], these proteins include six
different categories of protein-protein interfaces. The categories and the number
of representatives in each category are antibody antigen (13), protease-inhibitor
(11), enzyme complexes (13), large protease complexes (7), G-proteins, cell cy-
cle, signal transduction (16) and miscellaneous (17). Since the level of sequence
identity is low, the resulting dataset is more challenging than the datasets used
in previous studies [9] as well as by other authors [8]. The list of the 77 proteins
is available at http://www.public.iastate.edu/∼chhyan/ISMB2004/list.html.

4.2 Definition of Surface Residue and Interface Residues

The reduction of ASA upon complex formation is used in the definition of inter-
face residues. The DSSP program [24] is used to calculate ASA for each residue
in the unbound molecule (MASA) and in the complex (CASA). Rost and Sander
define a residue to be a surface residue if its MASA is at least 25% of its nom-
inal maximum area [25]. A surface residue is defined to be an interface residue
if its calculated ASA in the complex is less than that in the monomer by at
least 1A◦2 [26]. By using structural information from Protein Data Bank (PDB)
files, surface residues were extracted and divided into interface residues and
non-interface residues. Finally, a total of 2340 positive examples corresponding
to interface residues and 5091 negative examples corresponding to non-interface
residues were obtained [5].

4.3 Features

The selected features of each amino acid consist of (A) one feature representing
amino acid composition, (B) one representing for hydrophobic character, (C)
three features representing secondary structure propensity, (D) one represent-
ing accessible surface area, and (E) twenty features representing evolutionary
information derived from the position-specific scoring matrices generated from
PSI-BLAST profiles. There were together 26 features in all. All the features were
applied and the backward elimination procedure was used for feature selection.
Please contact the author for information on the features and the algorithm used
for producing these features.

4.4 Prediction Accuracy

To ensure a fair comparison with earlier prediction methods [5,9] on this dataset
of 77 individual proteins, a five-fold cross-validation was employed. We have used
several measures to evaluate the prediction accuracy: the prediction accuracy
is measured by the percentage of correctly predicted classes of protein-protein
interface residues [5]; the sensitivity score is the fraction of correctly predicted
positive protein-protein interface residues; and the specificity is the fraction of
true positives in the protein-protein interface residues predicted as positive [5].
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4.5 Results

The SVM method was implemented using LIBSVM library [27] which usually
leads to fast convergence in large optimization problems. The Gaussian kernel
K(x,y) = e−σ‖x−y‖2

showed superior performance over the linear and polyno-
mial kernels for predicting protein secondary structure [13,14], relative solvent
accessibility [15], and ASA of amino acids [16]. The parameters of the Gaussian
kernel and SVM, as σ = 2, γ = 1, and the neighborhood window w = 15(h = 7)
were determined empirically for optimal performances within the ranges [0.1,
3.0], [0.5, 2.0], and [7, 19] respectively.

Table 1. The performance of SVM approach based on different features with backward
elimination, using a five-fold cross-validation on the dataset of 77 proteins

Method Accuracy (%) Standard deviation

A, B, C, D, E 72.7 0.65

A, B, C, D 70.3 0.82

A, B, C 68.8 0.88

A, C, D 70.7 0.76

A, D, E 74.2 0.58

A, D 71.7 0.76

C, D 70.4 0.85

D, E 73.8 0.62

A 68.9 0.65

B 68.8 0.63

C 68.8 0.63

D 71.4 0.66

E 72.2 0.50

The performance of all the features developed in this study with SVM on
the dataset of 77 proteins is shown in Table 1. The SVM using amino acid
composition (A) predicted protein-protein interface residues with higher accu-
racy (68.9%) in comparison with the hydrophobic characters (B) and secondary
structure propensity (C) of amino acids. In the case of the ASA of amino acid
residues (D), the performance of SVM was 2.5% better than using the amino
acid composition (referred in Table 1). Therefore, accessible surface area, which
provided information about the degree of the residues in contact with the sol-
vent molecules, is a better feature for predicting protein-protein interaction sites.
The SVM using evolutionary information generated from PSI-BLAST profiles
(E) predicted protein-protein interface residues with best accuracy (72.2%) in
comparison with using amino acid composition, hydrophobic characters, sec-
ondary structure propensity, and ASA of amino acids. As shown in Table 1, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



194 M.N. Nguyen, J.C. Rajapakse, and K.-B. Duan

Table 2. Comparison of performances of SVM approach in protein-protein interface
residue prediction based on amino acid composition, ASA of amino acid residues, and
PSSMs generated by PSI-BLAST, with other methods on the dataset of 77 proteins

Method Accuracy Specificity Sensitivity

Yan et al. 2003 (SVM) 66.0 0.44 0.43

Yan 2004 (SVM & Bayesian) 72.0 0.58 0.39

K-nearest neighbor (KNN) 65.7 - -

Neural network (NN) 67.9 - -

The present method 74.2 0.78 0.72

best prediction accuracy of 74.2% was achieved by using the hybrid module with
the features of amino acid composition, ASA of amino acids, and evolutionary
information generated by PSI-BLAST profiles. The results from Table 1 indicate
that the features of ASA and evolutionary information from PSI-BLAST profiles
are more important for the prediction of protein-protein interaction sites than
those of hydrophobic characters and secondary structure propensity.

Table 2 shows the performances of different predictors for protein-protein
interface residues on the dataset. Compared to the SVM method of Yan et
al. using single sequence inputs [9], the present method significantly improved
accuracy with 8.2%. The accuracy was improved by 2.2% compared to results of
a two-stage classifier consisting of an SVM and a Bayesian network classifier of
Yan et al. [5]. As shown in Table 2, the sensitivity and specificity of the present
SVM approach outperformed the previous SVM methods of Yan et al. [5,9].

We also implemented the K-nearest neighbors (KNN) and neural network
(NN) methods based on amino acid composition by using Weka software [28].
We used the same five-fold cross-validation to provide an objective comparison
of these methods. For KNN classifier, the appropriate value of K is selected
in [1, 5] based on cross-validation. The accuracy of the present approach is
significantly higher than the results of KNN and NN methods using the amino
acid composition (see Table 2). Zhou and Shan [6] reported an accuracy value
of 69%-70% for a set of 35 test proteins when the input was calulated from the
bound and unbound structures. Recently, a consensus neural network method
proposed by Chen and Zhou [4] obtained the prediction accuracy of 70% with
47% coverage of native interface residues.

5 Discussion and Conclusion

In this paper, we investigated the combination of input features that could be
effectively used with SVM for protein-protein interface residue prediction. We
explore the amino acid composition, hydrophobic characters, secondary struc-
ture propensity, accessible surface area (ASA) of amino acids, and evolutionary
information generated from PSI-BLAST profiles. Experimental results confirmed
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the optimal features: amino acid composition, ASA of amino acid residues, and
evolutionary information with PSI-BLAST profiles.

Performance comparison results confirmed that the SVM approach achieved
better accuracy than the earlier reported accuracies in predicting protein-protein
interface residues on the tested dataset. The method should be tested on more
datasets before making strong conclusions on the optimal features or its efficacy.
The prediction of protein-protein interface residues by the present approach
could facilitate protein-protein interactions and the functions of amino acid se-
quences, which applications are worthwhile for further investigating.
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Abstract. The Human Immunodeficiency Virus (HIV) encodes an en-
zyme, called HIV protease, which is responsible for the generation of
infectious viral particles by cleaving the virus polypeptides. Many efforts
have been devoted to perform accurate predictions on the HIV-protease
cleavability of peptides, in order to design efficient inhibitor drugs. Over
the last decade, linear and nonlinear supervised learning methods have
been extensively used to discriminate between protease-cleavable and
non cleavable peptides. In this paper we consider four different proteins
encoding schemes and we apply a discrete variant of linear support vec-
tor machines to predict their HIV protease-cleavable status. Empirical
results indicate the effectiveness of the proposed method, that is able to
classify with the highest accuracy the cleavable and non cleavable pep-
tides contained in two publicly available benchmark datasets. Moreover,
the optimal classification rules generated are characterized by a strong
generalization capability, as shown by their accuracy in predicting the
HIV protease cleavable status of peptides in out-of-sample datasets.

Keywords: HIV protease, cleavable peptides prediction, discrete sup-
port vector machines.

1 Introduction

The Human Immunodeficiency Virus (HIV) encodes an enzyme, called HIV pro-
tease, which is responsible for the generation of infectious viral particles. HIV
protease function is to cleave virus polypeptides at defined susceptible sites. This
cut gives rise to new viral proteins which are able to spread from the native cell
and infect other cells. Thus, HIV protease plays a fundamental role in enabling
the replication of the virus.

In molecular biology, many efforts have been devoted to investigating the
HIV protease problem specificity. The interaction between the enzyme and the
virus polyprotein is based upon the following paradigm, also known as “lock
and key” model (Chou, 1996; Rögnvaldsson and You, 2004). The active peptide
in the protein, which is generally composed by a sequence of eight amino acids
around the cleavage site, must fit as a key for binding to the HIV protease
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active region. This means that new infectious particles are generated if the HIV
protease-cleavable site properly satisfies the substrate specificity of the active
enzyme region (Chou, 1996). If the chemical combination is not verified, the
bounding to the active protease site can still be accomplished but no cleavage
is performed or the production of immature noninfectious viral proteins takes
place.

According to this paradigm, effective HIV protease drugs can be designed with
the aim of smoothing the cleavage ability of the enzyme. This task may require
to identify inhibitors that, binding to the protease site, are able to prevent any
further binding (competitive inhibition) or change the structure of the enzyme
(non-competitive inhibition) (Narayanan et al., 2002). In both cases, the predic-
tion of which peptides can be cleaved and which can instead act as protease
inhibitors is of great importance.

The discrimination between cleavable and non cleavable sequences can be
naturally formulated as a binary classification problem. For this reason, several
supervised learning techniques have been applied to provide fast and accurate
predictions. In order to explain the complex relationship between peptides and
cleavability, many authors have resorted to nonlinear classification models; see
(Rögnvaldsson and You, 2004) and the references therein. However, there are
situations in which the problem of devising protease-cleavable sequences is linear
in nature, and can be efficiently solved by means of linear supervised learning
methods (Rögnvaldsson and You, 2004).

Recently, support vector machines (SVM) have been successfully applied to
predict the HIV protease-cleavable status of two sets of peptides. The first
dataset has been extensively used for the comparison of different classification ap-
proaches (Cai et al., 2002; Yang and Chou, 2004; Rögnvaldsson and You, 2004;
Nanni, 2006). It contains amino acid sequences that can be cleaved or not by the
protease from the Human Immunodeficiency Virus of type 1 (HIV-1 protease).
The second dataset, used in (Poorman et al., 1991; Chou, 1996), contains se-
quences known cleavable by the enzyme from the Human Immunodeficiency
Virus of type 2 (HIV-2 protease).

In this paper, we perform the classification of these two datasets by means
of an alternative method based on discrete support vector machines (DSVM).
By this term we denote SVM in which the empirical classification error is repre-
sented by a discrete function, called misclassification rate, counting the number
of misclassified examples, in place of a proxy of the misclassification distance
considered by traditional SVM approaches (Orsenigo and Vercellis, 2003, 2004).
The inclusion of the discrete term leads to the formulation of a mixed-integer
programming problem, whose objective function is composed by the weighted
sum of three terms, expressing a trade-off between accuracy and potential of
generalization.

The empirical results obtained on the benchmark datasets show the effec-
tiveness of the proposed method that, compared to traditional support vector
machines, is able to discriminate between cleavable and non cleavable peptides
with the highest accuracy. Moreover, the optimal classification rules generated
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are characterized by a strong generalization capability, as shown by their accu-
racy in predicting the HIV protease cleavable status of peptides in out-of-sample
datasets. Since the new method performs a linear separation of the examples,
the computational tests seem to support the intuition that, in this case, the pro-
tease cleavage site specificity problem can be efficiently investigated by means
of linear classification models.

2 Classification and Discrete Support Vector Machines

The problem of discerning between peptides according to their HIV protease-
cleavability likeliness can be cast in the form of a binary classification problem.
In a binary classification problem we are provided with a set of examples (i.e.
amino acids sequences) whose class (protease-cleavable or non cleavable status)
is known, and we are required to devise a function that performs an optimal
discrimination of the examples with respect to their class values. From a math-
ematical point of view, the problem can be stated as follows. Suppose we are
given a set Sm = {(xi, yi), i ∈ M = {1, 2, . . . , m}} of training examples, where
xi ∈ �n is an input vector of explanatory variables and yi ∈ D = {−1, +1} is
the categorical output value associated to xi. Let H denote a set of functions
f(x) : �n �→ D that represent hypothetical relationships between xi and yi.
A classification problem consists of defining an appropriate hypotheses space
H and a function f∗ ∈ H which optimally describes the relationship between
inputs and outputs. Actually, a vast majority of binary classifiers proceed by
defining a score function g(x) : �n �→ � and then inducing a classification rule
in the form f(x) = sgn(g(x)). In particular, many classifiers build a surface
g(x) = 0 in �n that attempts to spatially separate the examples of opposite
class value. For instance, when the space H is based on the set of separating
hyperplanes in �n, we have g(x) = w′x− b, so that a generic hypothesis is given
by f(x) = sgn(w′x − b).

In order to choose the optimal parameters w and b, support vector ma-
chines resort to the minimization of the following risk functional (Vapnik, 1995;
Cristianini and Shawe-Taylor, 2000)

R(f) =
1
m

L(y, f(x)) + λ‖f‖2
K , (1)

where K(·, ·) is a given symmetric positive definite function named kernel ; ‖f‖2
K

denotes the norm of f in the reproducing kernel Hilbert space induced by K
and plays a regularization role; L(y, f(x)) is a loss function that measures the
accuracy by which the predicted output f(x) approximates the actual output y;
λ is a parameter that controls the trade-off between the empirical error and the
regularization term.

In the theory of SVM, the loss function measures the distance of the misclas-
sified examples from the separating hyperplane, and is given by

L(y, f(x)) =
∑

i∈M
|1 − yig(xi)|+, (2)
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where g is a score function such that f(x) = sgn(g(x)) and |t|+ = t if t is pos-
itive and zero otherwise. A different family of classification models, introduced
in (Orsenigo and Vercellis, 2003, 2004) and termed discrete support vector ma-
chines (DSVM), is motivated by an alternative loss function that counts the
number of misclassified examples, given by

L(y, f(x)) =
∑

i∈M
ciθ(−yig(xi)), (3)

where θ(t) = 1 if t is positive and zero otherwise, while ci is a penalty for the
misclassification of the example xi. This leads to the formulation of a mixed-
integer programming problem that corresponds to the minimization of (1) using
the loss function in (3), with the inclusion of an additional regularization term
counting the number of attributes which define the separating hyperplane. The
minimization of this term is aimed at reducing the dimension of the space H in
order to derive optimal hypotheses of lower complexity and higher generalization
capability.

The problem of determining an optimal separating hyperplane is formulated as
follows in the DSVM framework. The number of misclassified points is computed
by means of the binary variables

pi =
{

0 if xi is correctly classified
1 if xi is misclassified . (4)

The count of the number of attributes defining the separating hyperplane is
instead based on the binary variables

qj =
{

0 if wj = 0
1 if wj �= 0 . (5)

Let hj, j ∈ N , be the penalty cost of using attribute j. Let S and R be sufficiently
large constant values, and α, β, γ the parameters to control the trade-off among
the objective function terms. The following discrete support vector machines
model can be formulated

min
w,b,p,u,q

α

m

m∑

i=1

cipi + β

n∑

j=1

uj + γ

n∑

j=1

hjqj (DSVM)

s. t. yi (w′xi − b) ≥ 1 − Spi i ∈ M (6)
uj ≤ Rqj j ∈ N (7)

−uj ≤ wj ≤ uj j ∈ N (8)
u ≥ 0, p,q binaries,

where the family of bounding variables uj , j ∈ N , and the constraints (8) are
introduced in order to linearize the norm of f in the risk functional (1).

The first term in the objective function represents the regularization term used
in the support vector machines framework in order to restore the well-posedness
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of the optimization problem and to increase the predictive capability of the clas-
sifier. The second term evaluates the prediction accuracy on the training sample
by means of the misclassification rate. The third term supports the generaliza-
tion capability of the solution by minimizing the number of attributes used in
the definition of the separating hyperplane, hence reducing the complexity of
the classification rule generated.

A feasible suboptimal solution to model DSVM can be derived by a heuris-
tic procedure based on a sequence of linear programming (LP) problems. The
heuristic starts by considering the LP relaxation of problem DSVM. Each LP
problem DSVMt+1 in the sequence is obtained by fixing to zero the relaxed bi-
nary variable with the smallest fractional value in the optimal solution of the
predecessor DSVMt. Notice that, if problem DSVMt is feasible and its optimal
solution is integer feasible, the procedure is stopped, and the solution generated
at iteration t is retained as an approximation to the optimal solution of problem
DSVM. Otherwise, if problem DSVMt is unfeasible, the procedure modifies the
previous LP problem DSVMt−1 by fixing to one all its fractional variables. The
problem DSVMt−1 defined in this way is feasible and any of its optimal solutions
is integer. Thus, the procedure is stopped and the solution found for DSVMt−1

is retained as an approximation to the optimal solution of DSVM.

3 Encoding Schemes for Amino Acid Sequences

The active region in the protein is usually composed by an octapeptide, that
is a sequence of eight amino acids around the scissible bond. According to
the representation introduced in (Schechter and Berger, 1967), each sequence
can be expressed as P4, P3, P2, P1, P1′ , P2′ , P3′ , P4′ , where the protease active
site, if it exists, is located between positions P1 and P1′ . Each amino acid
Pi can take one of the values contained in the following amino acid alphabet
B = {s1, s2, . . . , s20} ={A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.

The majority of the classification methods, such as those considered in this
paper, require to perform a numerical encoding of the categorical predictors.
Hence, an appropriate encoding scheme must be adopted to convert amino acid
sequences into numeric values. Several encoding schemes have been proposed
and tested for classification tasks involving amino acids in general, and for signal
peptide cleavage site prediction in particular; for a summary of some popular
encoding methods refer to (Maetschke et al., 2005).

In this paper four encoding schemes are considered. The first, termed or-
thonormal encoding, represents the most common method used in the cleav-
age site prediction for the treatment of the categorical values. According to this
method, each amino acid symbol si in the sequence is replaced by an orthonormal
vector di = (δi1, δi2, . . . , δi20), where δij is the Kronecher delta symbol. Then, a
sequence of K amino acids can be encoded by means of K orthonormal vectors,
leading to a binary encoding of the original sequence of a total length of 20K
attributes. Hence, the main drawback of the orthonormal encoding is the growth
of the number of attributes by a 20 factor.
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The second encoding scheme is based on combining the orthonormal repre-
sentation with substitution matrices, such as the popular BLOSUM50 matrix
that exhibited good performances in the classification of cleavable peptides
(Nanni, 2006). Substitution matrices estimate the probability at which each
amino acid in a protein is replaced by a different amino acid over time. These
matrices are usually derived by the amino acids exchanges observed in homol-
ogous sequences, which are proteins alike because of shared ancestry. Here the
idea is to build a 20 × 20 matrix whose entry in row i and column k expresses
a frequency score of observing amino acids si and sk at the same position in
homologous sequences. Then, the orthonormal encoding is modified by multi-
plying the vector di by the entry at row i and column i of the substitution
matrix. Again, this encoding results in a growth of the number of attributes by
a 20 factor.

The third method, termed frequency based encoding, is obtained by replacing
the amino acid si with the conditional probability of observing the symbol si

given the positive cleavable status of the peptide; of course, the same might be
done for the non cleavable class value, depending on which one is less likely
to occur. The rational behind this encoding is to replace each amino acid with
a value that takes into account its individual impact on the target class. If no
prior guess on the conditional probabilities can be derived from the knowledge of
the domain experts, one can wisely approximate the probabilities with relative
contingency tables frequencies evaluated on the HIV-protease training dataset.
The frequency encoding has the advantage of preserving the original number of
attributes.

Finally, a further encoding is derived by combining the orthonormal repre-
sentation with the frequency based scheme, by multiplying the vector di by the
frequency of the symbol si, conditioned on the class value. In this case too, the
encoding leads to a 20 factor growth in the number of attributes.

4 Computational Results

The predictive ability of the proposed method has been evaluated on two datasets
composed by sequences of eight amino acids that can be cleaved or not by the
HIV protease.

The first dataset, originally proposed in (Thompson et al., 1995) and ex-
tended in (Cai et al., 1998), has been widely used in order to compare alter-
native linear and nonlinear classification approaches. It contains 362 examples
where 114 are cleavable by the HIV-1 protease and 248 represent non cleavable
peptides. The best known accuracy achieved on this dataset appears to be 97.5%
(Nanni, 2006), yet obtained through rather involved data manipulations.

The second dataset, that has been less investigated in the past, contains 149
examples where 22 peptides are cleavable by the HIV-2 protease and 127 consist
of non cleavable sequences. In this dataset each positive example is given by a
substrate of the HIV-2 protease. Of the 127 non cleavable peptides, 122 have
been derived from the sequence of hen egg lysozyme, that did not exhibit any
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Table 1. Accuracy and sensitivity results for the HIV-1 protease dataset

Classifier
Accuracy - (Sensitivity)

Encoding DSVM SVML SVMG SVMRBF

freq 97.6% 92.8% 91.7% 92.8%
(95.7%) (88.4%) (92.1%) (86.8%)

orth 97.0% 90.6% 90.9% 90.6%
(95.9%) (87.5%) (81.4%) (88.4%)

orth+freq 96.3% 90.4% 89.9% 91.4%
(92.7%) (87.5%) (88.4%) (85.7%)

orth+BLOSUM50 97.0% 91.7% 91.2% 91.7%
(97.3%) (86.6%) (86.8%) (85.7%)

cleavage site even after complete denaturation, whereas the remaining five neg-
ative examples have been obtained by replacing the first amino acid of a specific
octapeptide with five different amino acids, as described in (Chou, 1996). The
best accuracy achieved on this dataset is 97.3%.

The effectiveness of the new classifier has been compared with the results
provided by linear SVM, which have proven to perform quite efficiently in the
classification of the first dataset, and by SVM with gaussian and radial basis
functions as kernels. In order to evaluate the accuracy of these classifiers k -fold
cross-validation was used for both datasets; more specifically, ten-fold cross-
validation was applied to the HIV-1 protease dataset, whereas five-fold cross-
validation was implemented for the HIV-2 dataset, due to its limited size.

Table 1 and 2 show the accuracy values exhibited by the competing meth-
ods according to the different schemes adopted for encoding the amino acid
sequences: the frequency based encoding (freq), the orthonormal representation
(orth), and the two forms derived by combining the orthonormal representation
with the frequency based scheme (orth+freq) and the substitution matrix BLO-
SUM50 (orth+BLOSUM50 ). The accuracy of method DSVM has been derived
using the sequential LP-based heuristic described in section 2. The results for
SVM methods with linear, gaussian and radial basis kernels have been computed
by means of the LIBSVM library (Chang and Lin, 2001). For all the methods, a
preliminary grid search was applied in order to select the most promising com-
bination of the parameters. Besides the accuracy values, tables 1 and 2 provide
the mean rate of the true positive responses (TPR), indicated also as sensitivity,
returned by the competing methods on the two datasets. The sensitivity can be
used to evaluate the effectiveness of a classifier in providing a correct prediction
for the cleavable peptides. In fact, the rate (1 − TPR) measures the error of
the first kind that, in this case, is represented by the error of assigning to the
cleavable peptides the non cleavable label.

The results presented in table 1 and 2 point out a number of interesting
issues. The classifier based on discrete support vector machines outperforms, in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



204 C. Orsenigo and C. Vercellis

Table 2. Accuracy and sensitivity results for the HIV-2 protease dataset

Classifier
Accuracy - (Sensitivity)

Encoding DSVM SVML SVMG SVMRBF

freq 98.7% 96.7% 96.7% 96.1%
(100%) (80.0%) (83.0%) (82.0%)

orth 96.0% 91.4% 90.0% 90.0%
(88.0%) (56.0%) (46.0%) (60.0%)

orth+freq 96.7% 96.7% 92.0% 91.3%
(59.0%) (70.0%) (70.0%) (65.0%)

orth+BLOSUM50 95.4% 90.0% 87.9% 90.7%
(79.0%) (47.0%) (42.0%) (37.0%)

terms of accuracy, the competing classification techniques considered for these
tests, with a mild dependence from the specific scheme adopted for encoding
the protein sequences. This empirical conclusion can be drawn for both HIV-1
and HIV-2 protease datasets, and the best performance is obtained using the
frequency based encoding scheme. In particular, the accuracy provided by the
DSVM classifier is higher than the best prediction accuracy value ever obtained
for the two datasets.

Moreover, the comparison of the linear classifiers DSVM and SVML with SVM
based on gaussian and radial basis kernels confirms the hypothesis that, for these
datasets, the problem of discerning between cleavable and non cleavable peptides
is linear in nature, and can be efficiently solved by means of linear classification
models.

Finally, we notice that DSVM consistently dominates the other methods re-
ferring also to the sensitivity, although the best result is in this case achieved by
means of the orth+BLOSUM50 representation. However, considering the overall
performance on the two datasets, it appears that the frequency based scheme is
more robust than the other encoding methods.

In order to further support the usefulness of the proposed approach, the
optimal classification rules generated were applied to predict the HIV-1 pro-
tease cleavable status of new peptides, gathered after the publication of the
first dataset. In particular, three new samples were considered: the first, de-
scribed in (Beck et al., 2000), contains 45 new protein sequences known cleavable
by the enzyme. The second, provided in (Beck et al., 2001), lists 38 sequences,
where 25 are cleavable and 13 are non cleavable by the HIV-1 protease. The
third dataset, presented in (Tözsr et al., 2000), consists of 49 peptides where
38 are cleavable, 3 are non cleavable and 8 are left undetermined. As noticed
in (Rögnvaldsson and You, 2004), due to the way non cleavable sequences were
collected, these datasets are hard to classify, since cleavable and non cleavable
peptides are rather similar.
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Table 3. Accuracy prediction for the HIV-1 protease out-of-sample datasets

Classifier
N. of correct predictions - (Accuracy)

Dataset DSVM SVML SVMG SVMRBF

Beck-00 43/45 32/45 34/45 38/45
(93.3%) (71.1%) (75.5%) (84.5%)

Beck-01 35/38 34/38 32/38 34/38
(92.1%) (89.5%) (84.2%) (89.5%)

Tözsr-00 39/41 35/41 36/41 35/41
(95.1%) (85.3%) (87.8%) (85.3%)

The prediction results on this datasets are reported in table 3. For each
dataset, the table indicates the number of correct predictions returned by apply-
ing the optimal classification rule derived for each method, using the frequency
based representation. The highest performance achieved by DSVM seems to in-
dicate the robustness and effectiveness of this class of methods, that are able to
generate optimal classification rules characterized by a stronger generalization
capability.
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Abstract. Inverse protein folding or protein design stands for search-
ing a particular amino acids sequence whose native structure or folding
matches a pre specified target.

The problem of finding the corresponding folded structure of a par-
ticular sequence is, per se, a hard computational problem.

We use a genetic algorithm for searching the space of potential se-
quences, and the fitness of each individual is measured with the out-
put of a second GA performing a minimization process in the space of
structures.

Using an off-lattice protein-like 2D model, we show how the imple-
mented techniques are able to obtain a variety of sequences attaining
the target structures proposed.

1 Introduction

In very simple terms, a protein consists of a chain of amino acids’ residues. The
chemical properties and forces between the amino acids residues are such that,
whenever the protein is left in its natural environment, it folds to a specific
3-dimensional structure, called its native state, which minimizes the total free
energy. This 3D structure is specially relevant because it determines completely
how the protein functions and interacts with other molecules. Most biological
mechanisms at the protein level are based on shape-complementarity, so that
proteins present particular concavities and convexities that allow them to bind
to each other and form complex structures, such as skin, hair and tendon [5].

The field of structural bioinformatics is plenty of very interesting problems,
and two of them are computationally hard: the protein structure prediction
problem and the inverse protein folding problem (or protein design) Both attract
the attention of researchers since a long time ago.

Protein structure prediction is one of the most significant technologies pursued
by computational structural biology and theoretical chemistry. It has the aim of
determining the three-dimensional structure of proteins from their amino acid
sequences. In more formal terms, this is expressed as the prediction of protein
tertiary structure from primary structure. Given the usefulness of known protein
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structures in such valuable tasks as rational drug design, this is a highly active
field of research.

It is assumed that: a) all the information needed for a protein to fold, is coded
in the sequence [1] and, b) the corresponding structure is the one that minimizes
the free energy of the system. Under this situation, the problem can be re-stated
as minimizing an energy function that may have several definitions as in the all-
atom model [16], HP lattice models [12,18], those only considering the backbone
[9] or atomic models where torsion (usually restricted) angles are considered [3].

Ab initio protein folding methods seek to build three-dimensional protein
models "from scratch", i.e., based on physical principles rather than (directly)
on previously solved structures. Under simple models, this problem was shown
to be NP-hard [6,17].

The progress of the field can be tracked through the results of the Critical
Assessment of Techniques for Protein Structure Prediction (CASP) wide com-
munity contest. See for example, [13] for a review of the last decade.

Inverse Protein Folding (or Protein Design) is the design of new protein mole-
cules from scratch. The number of possible amino acid sequences is infinite, but
only a subset of these sequences will fold reliably and quickly to a single native
state. Protein design involves identifying such sequences, in particular those with
a physiologically active native state.

Inverse Protein Folding requires an understanding of the process by which pro-
teins fold. In a sense it is the reverse of structure prediction: a tertiary structure
is specified, and a primary sequence is identified which will fold to it.

Some simplifications are usually made to approach this problem. The set of
aminoacids is limited, the fitness of a particular sequence is measured using a
threading like approach, target structures are restricted to lattices, etc. [7,8,2].
Pierce and Winfree [14] showed that optimizing the set of rotamers for a specified
backbone conformation is NP-Hard. The reader should note that under this
model, there is no “folding process”. A good overview of the field can be seen in
[15,11] and the references therein.

In this work, we focus on this second problem using a genetic algorithm to
explore the sequences space (GA-seq). In order to measure the fitness of each
individual, we need to use a second genetic algorithm that explores the space of
structures (GA-struct) looking for the one that minimizes an energy function.
A remarkably aspect is that, although a 2D space is used, structures are not
restricted to a particular lattice geometry.

The hypothesis of this work is that using GA-seq and given a particular target
structure, it is possible to obtain a sequence that, when folded with GA-struct,
the corresponding structure resembles the target one.

The paper is organized as follows: in Section 2, the models for sequences and
structures are presented, and the main characteristics of both GAs implemented.
Next, Section 3 is devoted to experiments and results. We divide the experiments
in two parts: firstly, we analyze GA-struct in terms of convergence and suitability;
secondly, GA-seq is tested for several target structures. Final comments and
future lines of research are outlined in Section 4.
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2 Model Definition

The inverse protein folding model is composed by a set of parameters determining
the nature and interaction degree of amino acids, and the type of possible protein
structures. More formally, the model is defined with a 4-tuple M(S, T, A, F )
where:

– S: is the topological space used to embed the conformations. Here, we use
�2 with Euclidean distance

– T : is the set of available amino acids, |T | = N
– A: a N ×N symmetric interaction matrix. Each cell ai,j indicates the degree

of interaction between an amino acid of type i and another of type j.
– F : is the interaction function. It may be defined as Fij = ai,j/(di,j)2, where

di,j is the Euclidean distance between amino acids i, j. Another possible
definition for F is as a potential function Pij = −ai,j/di,j . Through this
function, different folding forces may be represented, like electrostatic forces
or hydrophobic-hydrophilic characteristics [10].

A structure E is defined as a pair (L, G), where L is the sequence of amino
acids (li ∈ T ), and G is a set of angles that are used to determine the spatial
coordinates of every amino acids in S. If S = �3 then |G| = 2 ∗ (m − 1); when
S = �2 then |G| = m − 1.

2.1 GAs for Structure Prediction and Inverse Folding

Now, we will briefly describe the GAs employed for searching the space of se-
quences (GA-seq) and the space of associated structures (GA-struct).

Each individual in the GA-seq used to explore the space of sequences L, rep-
resents a fixed size list of amino acids. Uniform crossover and standard mutation
are used. Other parameters are specified later. The fitness of each individual
consists of two steps: to “fold” the sequence and to measure how good is the fit
against the target structure. The first part is also done with a genetic algorithm
named GA-struct.

Every individual in GA-struct, which explores the space of conformations,
represents a set of angles coded using floating point numbers. In this way, we
avoid the constraints of using a particular lattice geometry. Standard mutation,
and MMX [4] crossover operator are employed. The fitness of each individual
(the energy of the folded sequence) is calculated as:

Energy =
∑

i<j

Pi,j (1)

for every pair of amino acids. Once the GA-struct is finished, the ever best
individual, representing a particular structure A is taken and the goodness of fit
against the target structure B is measure as follows:
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RMSDd(A, B) =
1
m

√√√√
m∑

i=1

m∑

j=1

(dA
i,j − dB

i,j)2 (2)

where dX
i,j stands for the Euclidean distance between amino acid i and j in struc-

ture X . Essentially, we measure how similar are the internal distances between
both structures. This value represents the fitness of the individual in the GA-seq.

3 Computational Experiments and Results

Given the model M , we design two experiments with different aims

1. Given a particular sequence, is it possible to obtain the lowest energy struc-
ture?. Here we want to verify if the GA-struct is working fine solving a
protein structure prediction problem.

2. Given a particular target structure, is it possible to obtain a sequence that,
when folded with GA-struct, the corresponding structure resembles the target
one?. This is the inverse protein folding or protein design problem.

3.1 Protein Structure Prediction

In a first test, we try to minimize the energy of a simple sequence that may lead
to a membrane-like structure. It is composed by 14 amino acids (m = 14) and
just two types are available (N = 2, T = {0, 1}). The interaction matrix A is
defined as:

A =
(

1 −1
−1 1

)

In this way, amino acids of different types are attracted, while those of the
same type are repelled with the same energy.

The sequence to be folded is L = (00000001111111). After preliminary tests,
the following parameters were determined for GA-struct : population size 100,
mutation probability (per angle): 0.03, for the crossover: 5 parents lead to 2
child.

The convergence of the GA-struct was analyzed in the following way: we ran
103 repetitions for each value of maximum fitness evaluations available that were
fixed in 102, 103, 104, 106. So, for every stopping condition, we have 103 values
corresponding to the best solution found. Histograms are calculated from such
values and they are displayed in Fig. 1.

When just 102 evaluations are allowed, a wide range of energy values are
obtained (values are calculated with Eq. 1). Moreover, such values are centered
around energy = -0.5, thus contradicting the principles of structural molecular
stability.

As more evaluations are available, there is a clear tendency to a minimum
value of energy around -1.4, while the dispersion is diminished, thus meaning
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Fig. 1. Energy levels of 103 best individuals for different stopping limits

Table 1. Values obtained after 103 repetitions for every value of “Evals”

Evals Avg SD Min Max
102 -0,562 0,148 -1,058 -0,203
103 -0,978 0,186 -1,296 -0,422
104 -1,254 0,065 -1,381 -0,824
106 -1,436 0,025 -1,481 -1,339

Fig. 2. Example of a good energy structure for sequence L = (00000001111111)

that the probability of “misfolding” is also decremented. This is clearer if we
look at Table 1. Figure 2 shows a typical structure associated with the test
sequence.

Then, we design a new sequence that may fold as a globular structure (like a
spiral). We slightly change the interaction matrix to promote packing of amino
acids. The new matrix is:

A =
(

0.001 −1
−1 0.001

)

Now, amino acids of different types are attracted as before, but the repulsion
among those of the same type is minimum.
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Fig. 3. Five best energy structures for sequence L = (0111111111111111)

The test sequence, with m = 16 is L = (0111111111111111). One would expect
that the first amino acid attracts the other ones, lending to a spiral-like structure.
Using the same parameters as before for the GA-struct, and setting a limit of 104

energy evaluations, we performed 5 repetitions. The five best structures obtained
are shown in Fig. 3. As expected the spiral-like structure arose. Intuitively, this
is a natural way to put closer those amino acids that make a greater contribution
to the energy function.

3.2 Inverse Protein Folding

The experiments done in the previous part, enable us to use GA-struct as a
fitness calculator in GA-seq used for solving the inverse protein folding problem.

The first experiment to perform uses as target structure the globular one
obtained before and we try to find other sequences of length m = 16 that may
fold as a spiral. As stated before, the fitness of each sequence will be measured
through the RMSDd. GA-struct is run just once for each individual and uses
104 fitness evaluations. GA-seq uses 50 individuals, mutation probability of 0.03
(per amino acid) and uniform crossover. In this experiment, we allow for 103

iterations. The model M is kept as before.
The results obtained are shown in Fig. 4, where different folded sequences are

displayed with their energy value as calculated with Eq.2. This example matches
what happens in Nature: several sequences may share the same fold.

The next experiment is done with a different target structure, shown in Fig. 5
while the rest of the model is kept.

The results obtained are shown in Fig. 6 (a). Looking at the corresponding
structures, it seems that the sequences that can be designed with the model
defined, have no potential to fold as the target structure. Just one of them (the
lower one) is reasonably good.
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Fig. 4. Five sequences with best agreement to the target structure

Fig. 5. Target structure

To verify this fact, we modify the previous model, allowing for an additional
type of amino acid, and modifying the interaction matrix. Now, N = 3, T =
{0, 1, 2}, m = 19 and the new interaction matrix A is:

A =

⎛

⎝
0 0 −1
0 0.01 0

−1 0 0

⎞

⎠

Under this new model, the space of sequences grows to |L| = 319, so we extend
the population size to 100 individuals and each run is given 7500 iterations.
Results are shown in Fig. 6 (b). It can be seen that the values of RMSDd are lower
with this extended model, while the sequences obtained give folded structures
clearly better than before.

The sequences have a central region where attractive amino acids are located,
while the outer regions are filled with repulsive ones. It can also be noted that
particular regions of the sequences are invariant. These “conserved” regions may
be associated with evolutionary stability of the solutions.
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(a) (b)

Fig. 6. Sequences with best agreement to the target structure using a model with (a)
two and (b) three types of aminoacids

In order to make a deeper analysis of this fact, we constructed a “profile” using
a multiple alignment of the best 15 sequences found. The profile Q is, in this
case, a 3 × 19 matrix where each cell qi,j stands for the number of times the
amino acid i appeared at position j in the best solutions found.

Using this information, we measure the entropy of each position in the se-
quence as follows:

S(i) = −
N∑

i=1

p(a, i) × log(p(a, i)) (3)

where p(a, i) is the probability of finding an amino acid of type a at position i
(as calculated using the frequencies stored in the profile Q).

The values of S(i), ∀ i = 1, 2, . . . , 19 are shown in Fig.7. The values of S(i)
are lower for those positions that, when the sequence is folded, are located in
the outer regions of the structure. These regions are usually composed of amino
acids of type l1. This is the only “self”-repulsive amino acid, so it is the unique
way to construct such soft curves.

Regions with higher values of entropy are composed with amino acids of type
l0 or l2: both are neutral against l1 while have certain attraction between them.
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Fig. 7. Entropy values per position of the best sequences found

4 Final Comments

In this contribution we approach the inverse protein folding problem over 2D
off-lattice model with genetic algorithms. The GA used for searching the space
of sequences has a straight design and implementation. However, the fitness
calculation of each individual is the hardest part because it implies the resolution
of the protein structure prediction problem. This is an NP-Hard problem on
simpler models than the one used here.

The first part was devoted to show the good behavior of the GA developed
for structure prediction and then, we focus on the problem of protein design.

The experiments are encouraging and proved and justified the usefulness of
genetic algorithms for these problems in two senses:

1. the search mechanism allowed for the target structures tested, to obtain
sequences that, when folded, lead to native structures that showed an ex-
tremely good agreement with the target one;

2. the use of a population-based technique allowed to obtain a set of potential
sequences, folding to the same structure, that can be further analyzed on a
post-processing steps that may consider other elements not included in the
fitness function like physical feasibility, stability against mutations, etc.

Admittedly, further studies on bigger structures, extended amino acids alpha-
bets and GAs parametrization should be conducted and we think the simplicity
of the model used here is more a benefit than a problem to perform them. More-
over, we consider that such studies should be made in 2D models before going
into more complex 3D ones.

The fitness calculation will be surely a potential bottleneck for more complex
studies. However, the parallel evaluation of solutions is a clear and practical way
to speed up computations at a quite low cost. This step is being done.

Another research line, fits the scope of the automatic design of self-assembly
systems, where proteins are a paradigmatic case. Under this topic, we have made
the initial steps with this work, but we can extend the search process to look also
for the interaction matrix and potentially, for the set of amino acids available.
We hope to get some results in the near future.
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Abstract. Many heuristics used for finding biclusters in microarray
data use the mean squared residue as a way of evaluating the qual-
ity of biclusters. This has led to the discovery of interesting biclusters.
Recently it has been proven that the mean squared residue may fail to
identify some interesting biclusters. This motivates us to introduce a new
measure, called Virtual Error, for assessing the quality of biclusters in
microarray data. In order to test the validity of the proposed measure, we
include it within an evolutionary algorithm. Experimental results show
that the use of this novel measure is effective for finding interesting bi-
clusters, which could not have been discovered with the use of the mean
squared residue.

1 Introduction

Nowadays, technological advances offer the possibility of completely sequentialize
the genome of some living species. This constitutes a great source of information
which needs to be analyzed. Microarray techniques allow us to study genomes
on their own or also to combine some of them in order to extract relational
knowledge [12].

Microarray data are usually transformed into a numerical matrix which could
then be analyzed. There exist various techniques to extract relevant informa-
tion from a microarray, depending on the specific application in study. These
techniques include clustering methods [4], where the goal is to cluster together
genes that have a similar behaviour under all the experimental conditions. This
grouping is carried out by means of any specific algorithm or mathematical for-
mula based on genes similarity over all conditions [13]. It may be interesting,
however, to analyze whether several genes in a microarray show the same behav-
iour under a subset of the experimental conditions. This has motivated a recent
line of research named biclustering. Biclustering techniques aim at individuating
subsets of genes that present the same behaviour under a subset of experimental
conditions. This problem has been proven to be even much more complex than
clustering [8].

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 217–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Biclustering was first applied to genomic data in [6], where the authors present a
greedy searchmethod for finding biclusters. In the same work, a measure for assess-
ing the quality of biclusters, named Mean Squared Residue (MSR), is proposed. This
measure has been used by many researches who have proposed different heuristics
for biclustering biological data, e.g., [2,14]. Some other authors have established a
searchmodel to detect significant biclusters, without using a specific formula to op-
timize [11]. For a review of different biclustering techniques, we refer the reader to
[9,10]. Among the used techniques, it is interesting to emphasize the application of
evolutionary computation to the problem of finding biclusters in microarray data
[5,8]. In these work the search was biased towards biclusters with low MSR.

The use of MSR to guide the search for biclusters in microarray data has
led to the discovery of interesting biclusters. However, it has been proven that
MSR may fail to recognize some interesting biclusters as quality biclusters [1].
This motivates us to introduce a new measure, called Virtual Error (VE), for
assessing the quality of biclusters in microarray data. In order to evaluate the
validity of the proposed measure, we include it within an evolutionary algorithm
(EA). In a previous version of this EA, the search was guided mainly by the
MSR. Experimental results show that the so modified EA is capable of finding
interesting biclusters, which could not have been discovered with the use of MSR.

This paper is organized as follows: in Section 2 we present the motivations
for this paper, we therefore describe the quality measure we propose in Section
3. Section 4 describes the used EA and how VE has been included into the algo-
rithm, while some experimental results are shown in Section 5. Finally, Section
6 summarizes the main conclusions.

2 Motivation

One of the most used quality measures for biclusters is the Mean Squared Residue,
MSR [6]. MSR tries to evaluate the coherence of the genes and conditions of a biclus-
ter B consisting of I rows and J columns. MSR is defined as:

MSR(B) =
1

I · J

i=I∑

i=1

j=J∑

j=1

(bij − biJ − bIj + bIJ)2 (1)

where bij , biJ , bIj and bIJ represent the element in the ith row and jth column,
the row and column means, and the mean of the submatrix, respectively. If the
gene expression levels fluctuate in unison under the conditions contained in a
bicluster B, then MSR(B)= 0 . In general, the lower the MSR, the stronger the
coherence exhibited by the bicluster, hence the better the quality. It follows that
a trivial or constant bicluster where there is no fluctuation is characterized by a
very low value of MSR. In order to reject these kind of biclusters, most heuristics
combine the MSR with some other measures, e.g., the row variance [8,6].

As demonstrated in [1], MSR may not be the optimal measure for assessing
the quality of some kinds of biclusters. In this work, the author makes a further
study on the main characteristics inherent to biclusters, extracting from them
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two main principles, shifting patterns and scaling patterns. Genes in a bicluster
might present either one of these patterns or both of them simultaneously. It is
demonstrated that the MSR value is useful to recognize shifting behaviours in the
biclusters, while it may fail to recognize a bicluster presenting scaling patterns.

Figure 1 shows two biclusters whose genes fluctuate in unison under the condi-
tions contained in the bicluster. Each line in the graphs represents the expression
levels of a gene under different conditions. This figure also presents the numer-
ical values for each bicluster in a matrix, where columns correspond to genes
and rows to experimental conditions. Despite the fact the the genes present the
same behaviour under the experimental conditions, the MSR value for the two
biclusters does not seem to indicate that they are equally good biclusters. The
MSR for the two biclusters is 236.25 and 385, respectively. As it can be seen in
Figure 1, the only difference between these two biclusters is represented by the
value assumed by the genes under the third condition. Comparing these two
biclusters graphically, we cannot conclude that the left one is better than the
right one, as it would be unfair to claim that genes presenting lower values for a
certain condition are preferable to higher values.

MSR (B2)  = 385

0

50

100

150

200

250

1 2 3 4

MSR(B1) = 236,25

0

50

100

150

200

250

1 2 3 4

B 2=B 1=

Fig. 1. Examples of similar biclusters with different MSR values

This motivates us to propose a novel measure for assessing the quality of
bicluster in microarray data. This measure should avoid taking into account the
numerical similarities in the submatrix. Instead, it should quantify the behaviour
of the genes under all the conditions contained in the bicluster. We therefore
propose a novel criterion, called Virtual Error (VE), based on the concept of
behavioural patterns.

3 Virtual Error

The main idea behind VE is to create a pattern from each bicluster in order
to represent the general trends within it. This pattern will try to capture the
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overall behaviour of the genes over the conditions in the bicluster, checking if the
expression levels of the genes vary in unison, with independence on the specific
values and slopes. VE is based on the use of a tendency pattern for each bicluster.
Therefore, this quality value will depend on the way in which the pattern is built.

Next, we formally define how the pattern is created, starting from a bicluster
B, consisting of I conditions (rows) and J genes (columns), and where each
element in the bicluster is represented as bij , where 1 ≤ i ≤ I and 1 ≤ j ≤ J .

Definition 1 (Tendency Pattern). Given a bicluster B containing I condi-
tions and J genes, we define the tendency pattern as a collection of I elements
Pi, each of them given by: Pi =

�
j∈J bij

J , bij ∈ B, 1 ≤ i ≤ I, 1 ≤ j ≤ J .

Thus, each of the points of the pattern will represent a significative value for all
genes under a specific condition.

Once the pattern has been built, the aim is to examine to what extent the
genes are similar to it. In this sense, we need a mechanism in order to do an
appropriate comparison between each gene and the pattern. This mechanism
would be responsible for smoothing every gene behaviour, since the most im-
portant issue is to characterize their conduct but not their numerical values.
An example of this is represented by scaling patterns (see section 2), where two
different genes may present the same behaviour under the same experimental
conditions, but with different magnitude of expression values.

Definition 2 (Standardization). Let B be a bicluster containing J genes and
I conditions. Let bij denotes the elements of B, for 1 ≤ i ≤ I and 1 ≤ j ≤ J .
We then define the standardization of B as the bicluster B′, whose element b′ij
are b′ij = bij−bIj

σgj
, 1 ≤ i ≤ I, 1 ≤ j ≤ J , where σgj is the standard deviation of all

the expression values of gene j.

By means of the standardization, two distinct tasks are carried out. The first
one is to shift all the genes to a similar range of values (near 0 in this case).
The second one is to homogenize the expression values for each gene, modifying
in this way their values under all the conditions, and smoothing their graphical
representation.

It is important to notice that in order to fairly compare genes values to pattern
values, all of them must be enclosed in the same range of values. Thus, the
pattern must be also standardized, generating a so called virtual pattern. This
is shown in equation 2, where Pi refers to the pattern value for condition i,
and P , σP refer to the mean and the deviation of all the values in the pattern,
respectively.

P ′
i =

Pi − P

σP
(2)

Definition 3 (Virtual Error). Given a bicluster B containing I conditions
and J genes, and a pattern P containing I values, we define VE as the mean of
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the numerical differences between each standardized gene and pattern values for
each condition:

VE(B) =
1

I · J

i=I∑

i=1

j=J∑

j=1

(b′ij − P ′
i )

VE(B) corresponds to our measure proposal, which states that biclusters with
lower levels of VE are considered to be better than those with higher values.
This is due to the fact that VE computes the differences between the standardized
genes and the pattern, therefore, the more similar the genes are, the lower the
value for VE. It then is important to note that shifting patterns do not increase the
value of VE, since standardizing genes allows the VE to compare their behaviour
within the same range of values. In the case of scaling patterns, it has a minimal
effect on our measure, as the standardization decreases the numerical differences
among genes. As an instance, biclusters shown in Figure 1 have VE values prac-
tically equal to zero (VE(B1) = 2, 77 × 10−17 and VE(B2) = −1, 39 × 10−17).
These values indicate that VE considers both biclusters as equally good. VE owes
its name to the fact that the error is not computed using the original genes and
pattern, but with virtual ones, once the original data has been standardized.

In the whole, this new measure provides a value for each bicluster, quantifying
the similarities among genes by means of comparing their behaviour to a pattern.
This comparison is carried out in such a way that shifting and scaling trends are
minimally penalized, while behavioural differences among genes notably increase
the quality value.

4 Description of the Algorithm

In order to assess the effectiveness of the VE as a measure for establishing the
quality of biclusters, we have incorporated it in the EA SEBI [8]. In order to use
the VE within SEBI, we have modified the fitness function of SEBI, as explained
next.

SEBI adopts a sequential covering strategy: an EA, called EBI (for Evolution-
ary BIclustering), is called n times, where n is an user-defined parameter. EBI
takes as input the expression matrix and returns a bicluster, which is stored in
a list called Results, and EBI is called again.

In order to avoid too much overlapping among the found biclusters, we as-
sociate a weight to each element of the expression matrix. After a bicluster is
returned, these weights are adjusted. The weight of an element depends on the
number of biclusters in Results containing the element. The more biclusters cover
an element, the higher the weight of the element will be (see [8] for more details).

In [8], the fitness of an individual X was:

f(X) =
MSR(X)

δ
+

1
row_variance(X)

+ +w_d + penalty (3)

where MSR(X) represents the mean squared residue of X , δ is a user supplied
threshold, row_variance(X) is the row variance of X , w_d is used for penalizing
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smaller biclusters and penalty is the sum of the weights assigned to the element
of the expression matrix belonging to the bicluster X . Notice that the fitness
has to be minimized. It follows that the aim of EBI was to find biclusters with
mean squared residue lower than δ, with high volume, with a relatively high row
variance, and minimizing the effect of overlapping among biclusters.

In the version of EBI we use in this paper, we have modified the fitness function
defined in equation 3 in the following way:

f(X) = VE(X) + w_d + penalty (4)

where VE(X) is the virtual error of X , w_d and penalty are defined as in [8], but
are scaled to adapt to VE. Also this fitness has to be minimized, hence we prefer
biclusters characterized by a low VE, high volume and minimum overlapping with
biclusters contained in Results. In this fitness function, we do not use the row
variance, as it happened in equation 3. This is because with the use of VE we do
not need this factor to reject trivial biclusters, as it happened when the MSR was
used.

As in [8], the initial population consists of biclusters containing only one
element of the expression matrix. Tournament selection is used for selecting
parents. Selected pairs of parents are recombined with a crossover operator with
a given probability pc (default value 0.9), and the resulting offspring is mutated
with a probability pm (default value 0.1). Elitism is applied with a probability
pe (default value 0.75). At the end of the evolutionary process, EBI returns the
best individual, according to the fitness.

Each individual of the population encodes one bicluster. Biclusters are en-
coded by means of binary strings of length N + M , where N and M are the
number of rows (genes) and of columns (conditions) of the expression matrix,
respectively. Each of the first N bits of the binary string is related to the rows, in
the order in which the bits appear in the string. In the same way, the remaining
M bits are related to the columns. If a bit is set to 1, it means that the relative
row or column belongs to the encoded bicluster; otherwise it does not.

5 Experiments

In order to show the quality of our approach, we run SEBI on two well known
datasets. The first one, the yeast Saccharomyces cerevisiae cell cycle expression
dataset [7], is a microarray which contains 2884 genes and 17 conditions. The
second dataset is the human B-cells expression data [3], that consists of 4026
genes and 96 conditions.

With regard to the EA parameters, we used the same parameter setting as in
[8]. Thus, we can compare the results with those obtained in the previous EA
version, where the MSR was used as main term of the fitness function. Specifically,
we used a population of 200 individuals and a number of generations of 100.
The crossover probability was of 0.85 and the mutation probability was 0.2.
The number of biclusters was set to 100, that is, SEBI generated one hundred
biclusters for each dataset.
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Fig. 2. Biclusters found on the Yeast dataset

Figure 2 shows six biclusters out of the one hundred found on the yeast dataset
(see Table 1 for numerical results). The bicluster labelled yeast1 is found with the
fist call of SEBI. As we can see, this bicluster is visually interesting. Furthermore,
it has low VE of 0.38, but high residue of 535.8. This is a remarkable result, since
first biclusters found with VE were interesting, while this is not the case with
MSR, as it can be seen in [8] and [6].

In general, we can notice from a visual inspection of all the biclusters that the
genes present a similar behaviour under the set of selected conditions. All the VE
of the biclusters are lower than 0.38. We find especially interesting the fact that,
some genes in the bicluster are distant from the rest of it but they show a similar
trend. For example, bicluster yeast44 is interesting because it differentiates three
genes at the top of the graph from the others, although all the genes seem to
have the same behaviour. This points out that VE is not sensitive to the scale or
magnitude difference in the expression values of the genes. Furthermore, this is
a kind of bicluster difficult to find by using the MSR [1].
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Fig. 3. Biclusters found for the human dataset

Concerning the size of the biclusters, many biclusters contain all the seventeen
conditions. A similar result was also obtained in the previous version of SEBI
[8], where MSR was used as main term in fitness function. However, the number
of genes was higher in this case than those obtained in the aforementioned work.
Thus, the use of VE allows SEBI to include more genes without damaging the
bicluster quality.

The human dataset is larger and more complex than the yeast dataset. There-
fore, it is also more complex to find good biclusters with low VE. Six out of one
hundred biclusters found on such dataset are shown in Figure 3 (see Table 1 for
numerical results).

The bicluster (human1), that SEBI with VE finds in the first execution of
EBI, is interesting. However, it does not happen the same with MSR. Although
it has also low VE (0.57), the most remarkable aspect is that the residue of
this bicluster is very high (7173.5). This strengthens our conclusion that SEBI
can find interesting biclusters in the first iterations when VE is used as quality
measure instead of MSR.
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Table 1. Information about biclusters of Figures 2 and 3

Yeast Dataset Human Dataset
Bicluster VE MSR #Genes #Cond. Bicluster VE MSR #Genes #Cond.
yeast1 0.38 535.8 23 17 human1 0.57 7173.5 21 50
yeast32 0.29 408.9 19 17 human21 0.39 6405.4 9 48
yeast35 0.28 380.6 18 15 human34 0.43 3278.8 7 38
yeast44 0.30 583.5 21 17 human39 0.44 5786.1 21 39
yeast51 0.34 346.7 12 15 human52 0.42 5660.7 15 44
yeast85 0.36 232.1 16 15 human55 0.46 4069.5 14 41

Regarding the shape of the biclusters, all of them present a similar trend,
although the genes are closer in this case than in yeast dataset case. Also in the
human dataset, VE is not sensitive to the magnitude difference in the values of
the genes. This aspect can be observed in the bicluster human52, where there is
a decrease of the expression level between 15 and 25 for all the genes but with
different scale. Finally, the number of genes and conditions are similar to those
produced in the previous version of SEBI with MSR.

Table 1 summarizes the numerical results for Figures 2 and 3. The left table
corresponds to the yeast dataset, while the right one to the human dataset. For
each table, the first column indicates the name of bicluster. The second column
gives the VE value and the third ones the MSR measurement for each bicluster.
The last two columns report the number of genes and conditions of the bicluster,
respectively.

The most interesting result that can be extracted from these tables is that the
biclusters present low VE but high MSR for both datasets. Taking into account that
these bicluster are interesting, they could be rejected by the other approaches
which use the MSR as main quality measure. For instance, the version of SEBI
proposed in [8] used a threshold for rejecting biclusters with MSR higher than
this threshold. For the yeast dataset this threshold was set to 300, and for the
human dataset to 1200, as in [6]. Therefore, all the biclusters shown in Table 1,
with the exception of yeast85, would have been rejected.

6 Conclusions

In this work, we have proposed a novel measure for assessing the quality of
biclusters in microarray data, called Virtual Error (VE). VE is based on the
concept of tendency pattern. The majority of the existing biclustering methods
are based on the well-known Mean Squared Residue (MSR) as the quality measure.
However, MSR may fail to recognize some interesting biclusters.

In order to test the goodness of our proposal, we have used VE as main term
in the fitness function of an EA. We have then applied the resulting EA to two
well-known datasets. From experimental results we can draw the following three
main conclusions.
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By using VE, the EA found very interesting biclusters with very low VE values.
The same biclusters would not have been considered as high-quality biclusters
if evaluated with MSR. The row variance is not needed in order to reject trivial
or constant biclusters as it happens when MSR is the main term in the fitness
function. Another result is that VE is not sensitive to the scale or magnitude
difference in the expression values of the genes, as long as they present the same
behaviour. It has been proven that this kind of biclusters is difficult to find by
using the MSR.
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Abstract. A common way to characterise important and conserved signals in 
nucleotide sequences, such as transcription factor binding sites, is via the use of 
so-called consensus sequences or consensus patterns. A well-known example is 
the so-called “TATA-box” commonly found in eukaryotic core promoters. Such 
patterns are valuable in that they offer an insight into basic molecular biology 
processes, and can support reasoning regarding the understanding, design and 
control of these processes. However it is rare for such patterns to be accurate; 
instead they represent a very approximate characterisation of the signal under 
study. At the opposite extreme, we may instead characterise such a signal via a 
neural network, or a high-order Markov model, and so on. These have better 
sensitivity and specificity, but are unreadable, and consequently unhelpful for 
conveying an understanding of the underlying molecular biology processes that 
could support insight or reasoning. We describe a simple pattern language, 
called crisp hypermotifs (CHMs), that leads to highly readable patterns that can 
support understanding and reasoning, yet achieve greater sensitivity and speci-
ficity than the commonly used approaches to crisply characterise a signal. We 
use evolutionary computation to discover high-performance CHMs from data, 
and we argue that CHMs be used in place of classical consensus motifs, and 
justify that by presenting examples derived from a large dataset of mammalian 
core promoters. We provide CHM alternatives to the well-known core promoter 
TATA-box and Initiator patterns that have better sensitivity and specificity than 
their classical counterparts.    

1   Introduction 

It is common in molecular biology to seek models that discriminate between different 
groups of nucleotide sequences. For example, we need to be able to discriminate be-
tween intron/exon splice sites and control sequences, between core promoters and 
control sequences, between different classes of microRNA, and so forth. The model 
used for discrimination can take many forms, but at a high level we can categorise 
them as occupying a continuum from ‘readable/approximate’ to ‘opaque/accurate’. At 
the ‘readable/approximate’ end, we have straightforward sequences or simple patterns 
that characterise the positive (i.e. not the control) sequences. For example, such a 
model might be a simple consensus sequence, from the alphabet {A,C,G,T}, which is 
commonly observed in the positive sequences and rarely observed in the controls. Or, 
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we may have a pattern from the IUPAC1 alphabet, such as YYCARR, which matches 
several of the positive cases but fewer or none of the controls. Meanwhile, at the 
‘opaque/accurate’ end of this continuum, we may have models such as hidden 
Markov models (e.g. Henderson et al, 97), higher-order Markov models,(e.g. Salzberg 
et al, 98) neural networks (e.g. Reese, 01), support vector machines (e.g. Zien et al, 
00), and so on. These tend to provide more accurate classification than the simple 
patterns, and are consequently used for genome annotation and similar tasks, however 
they are opaque to analysis – i.e. it is very difficult or impossible to glean knowledge 
and insight concerning the precise sequences and patterns of nucleotides that form the 
signal of interest.  

Conceivably, there are DNA and RNA tasks for which consensus or simple pat-
terns are sufficient, since the signal of interest is highly conserved. But for the major-
ity of such tasks, simple patterns made from the IUPAC alphabet (see Table 1) poorly 
capture the variability of nucleotide composition in the signal, and score quite low in 
sensitivity and specificity.  

Table 1. The IUPAC alphabet for nucleotide subsets, used in motifs 

Nucleotide subset IUPAC 

Symbol 

A A 

C C 

G G 

T T 

A, C M 

A, G R

A, T W 

C, G S 

C, T Y 

G, T K 

A, C, G V 

A, C, T H 

A, G, T D 

C, G, T B

A, C, G, T N 
 

An interesting challenge is to find ways that can provide accuracy competitive with 
‘opaque’ techniques, yet which have enough readability to support fruitful insight and 
conjecture concerning underlying molecular biology mechanisms. The idea of using a 
hypermotif (Pridgeon & Corne, 05) was motivated by this challenge. In the latter 
paper, we focused on the use of weighted hypermotifs for use in conjunction with 
neural networks, to provide discrimination at the ‘opaque’ end of the model spectrum. 
In this paper we concentrate only on beginning to examine ‘crisp’ (i.e. unweighted) 

                                                           
1 IUPAC: International Union of Pure and Applied Chemistry – a source of standards, include 

common abbreviations for sets of nucleotides. 
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hypermotifs, focusing on whether we can find HM patterns that can readably capture 
highly variable biological signals. 

The remainder of this paper is set out as follows. Section 2 describes and discusses 
crisp hypermotifs, section 3 describe the straightforward evolutionary algorithms we 
use to discover crisp hypermotifs for characterizing core promoter regions, section 4 
shows results, and section 5 finishes with some brief discussion and consideration of 
future work.  

2   Crisp Hypermotifs 

It is common to use a pattern of symbols from the IUPAC alphabet (Table 1) to form 
patterns (which we will call IUPAC-motifs), to represent a family of nucleotide se-
quences. Such patterns have the benefit of `human readability’. Given an IUPAC  
motif M, say, which discriminates well between positive and control examples for 
some significant DNA binding site, as well as the use of M as a (although possibly 
weak) predictive model for annotation of new and unknown sites, M also readably 
and directly expresses a pattern of nucleotides that constitute the signal. This in turn 
can lead to new biological insight concerning the molecular biology mechanism in-
volved, such as potential binding molecules, or potential docking sites for suspected 
molecules.     

However, IUPAC-based motifs are quite impoverished in their ability to charac-
terize signals. To see this, it will be useful to first set out some simple notation. 
Suppose we have a signal that is present in a positive dataset P, and known not to 
be present in a negative or control dataset N. We desire to find a pattern that 
matches only the sequences in P, and does not match any of the sequences in N. 
Whether or not this is possible in the first place depends on the kind of pattern 
structure in use. To understand this point, that we call ‘discriminatory power’, 
consider how many ways our dataset (the set D, consisting of the union of N and 
P) can be partitioned into 2 sets. For a total of k sequences, the number of distinct 

such partitions is 12 1 −−k  (excluding the partition involving D and the empty set). 
Since this number represents all possible ways that D can be divided into two sets 
(e.g. P and N), it represents, the ‘ideal’ level of discriminatory power. Now con-
sider motifs formed from a sequence of l symbols in the IUPAC alphabet. There 

are l15  possible such motifs, and therefore at most l15  ways in which such a motif 
can lead to a partition of a set of such sequences. If our sequence set contained all 

l-base sequences, of which there are l4 , this represents a fraction 
lll 4)14( 2))12/(15( −− ≈− of all possible partitions, suggesting that straightforward 

IUPAC alphabet motifs are highly unlikely to be able to discriminate between the 
two sets in an arbitrarily chosen partition of sequences. To see a simple example, 
consider a sequence signal which is present in these eight 3-nucleotide sequences: 

   ACG, CAG, ACT, CAT, ACA, CAA, ACC, CAC 
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but which is present in no other 3-nucleotide sequence. The pattern which captures 
this must recognise that the first and second positions may be AC or CA, but not AA 
and not CC; meanwhile, the third position can be any nucleotide. This simply cannot 
be expressed by a single sequence motif. The attempt `MMN’ is fine in terms of the 
third position, and matches all eight of the positive examples, however it also matches 
four negatives which start with AA, and four more which start with CC. 

A crisp hypermotif (CHM) extends the notion of a motif by using an extended al-
phabet that covers all possible subsets of a 2-nucleotide segment (rather than, as with 
standard motifs, all possible subsets of a 1-nucleotide segment). A CHM consists of a 
number of 16-bit vectors in sequence. Each 16-bit vector (or chunk), represents a 
subset of 2-nucleotide sequences for a 2-nucleotide window. In a single chunk, each 
bit represents the presence or absence of a given dinucleotide; bit positions are 
mapped to dinucleotides in alphabetical order, so that the first bit represents AA and 
the last represents TT. For example, the chunk: 

1000100000000001 

represents the subset {AA, CA, TT}. The following 3-chunk hypermotif: 

001100000010  000000001111  100000000000 

represents the set of 6-base sequences in which the first pair can be AG or AT or TG, 
the second pair can be TA, TC, TG or TT, and the third pair can only be AA. Note 
that we do not allow a chunk to be all zeroes. Meanwhile, we can express a CHM 
readably by simply listing ithe set of allowed nucleotide pairs. For example, the three-
chunk CHM above can be readably expressed as: 

{AG-AT-TG} | {TA-TC-TG-TT} | {TA}  

In practice, we note that it can be simplified further (and we make use of this in our 
results section) by employing the IUPAC alphabet where possible. Also, we omit the 
curly braces when only one pair is present for a particular chunk – hence, the above 
CHM is equivalent to this: 

{AK-TG} | TN | TA  

Now let’s compare the discriminatory power of CHMs and IUPAC-motifs. When 
representing l-base sequences (where we will assume l is even), we have seen that 

there are l15 motifs, and hence up to l15  partitions of a set of sequences can be en-

coded. For CHMs this number is 2/16 )12( l−  and they are therefore a ratio 
lllll 23.118.141.22/16 1010/1015/)12( ≈≈− times more discriminatory than motifs. For 

reasonable sequence lengths, this suggests enormously better discriminatory power, 
yet retaining a potential level of readability.  
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3   Evolving Crisp Hypermotifs 

In this initial study of CHMs, we use a straightforward evolutionary algorithm to 
evolve CHMs, assigning fitness using the Matthews Correlation Coefficient (MCC) 
(Matthews, 75) indicated below.  

MCC = 
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP

++++
⋅−⋅

 

where TP means true positives, TN means true negatives, and so forth. The MCC 
provides a convenient measure of discriminative ability, and is commonly used in 
bioinformatics, but is not an ideal measure (indeed there is no ideal single-objective 
fitness measure in this case). The evolutionary algorithm (EA) (Fogel et al, 66; 
Schwefel, 81; Goldberg, 89) uses binary tournament selection (Goldberg, 89), steady-
sate replacement (Syswerda, 90) with crowding (de Jong, 75), a population size of 
200, crowding factor of 20, and the only operator is mutation, with a rate of 1, and a 
strength of precisely 1 gene-flip per operation. In the runs that produced the results 
discussed in the next section, populations were initialized with 10% mutated (flipped) 
versions of the CHM corresponding to either TATAWAW, YYCARR or 
YYANWYY. Each individual in the population is a CHM of a given fixed number of 
chunks (fixed per experiment). So, for example, in a case of 4-chunk CHMs, the indi-
viduals were 64-bit binary strings. Fitness was assigned by sliding the CHM pattern 
along each sequence in the data to record whether or not it matched that sequence. If 
it matched once or more within a core promoter sequence, this was recorded as a 
single true positive, and a match to a control sequence was recorded as a false  
positive.    

4   Experiments and Results 

We used the well-known fairly comprehensive dataset of mammalian promoters and 
control sequences collected by Reese (2001), available at the following URL:  
http://www.fruitfly.org/seq_tools/datasets/Human/promoter/. These data consist of 
565 vertebrate promoters and 5,235 control sequences. The controls are either se-
quences from coding regions or sequences that are known to be introns. Following 
Reese (2003) and other authors, we extracted the core promoter region from each 
sequence (and the corresponding region in the control sequences), by extracting the 
40 bases upstream of the transcription start site and 11 bases downstream of the TSS.    

It is important to note here that in the current paper we treat the data as authorita-
tive, and are interested in the specific CHM patterns that we can find. That is, we are 
not at the moment interested in using CHMs as predictive tools, and hence we are not 
investigating and evaluating a method for promoter classification. Rather, we are 
interested in understanding what patterns are in known promoter data. Hence there is 
no requirement for separating the data into training, test and validation sets, since this 
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is an investigation of patterns in the full dataset itself. Consequently, we do not make 
any claims about the ‘performance’ of the discovered patterns on unseen data, but we 
simply imply tentative generalization from the fact that (as we will see) CHM patterns 
seem to capture core promoter signals in these data more effectively than the standard 
consensus patterns, and hence may be candidates for replacement of such patterns in 
molecular biologists’ intuitions. 

4.1   Performance of IUPAC Based Motifs 

First, it is instructive to view the discriminatory ability of the well-known motifs on 
the Reese dataset. This is shown in Table 2. 

Table 2. Discriminatory ability of well-known core promoter motifs 

Motif Sensitivity Specificity MCC 
TATAWAW 25.1327 1.98 0.340557 
YYCARR 0.0 0.0 -0.014 
YYANWYY 0.0 0.0 -0.058 

The first motif is the standard TATA-box consensus, which is found in the core re-
gion in just over 25% of Reese mammalian promoter data, but is also found in mar-
ginally below 2% of the control (non-promoter) sequences. This TATA-box motif is 
clearly highly representative and indicative of a core promoter region (roughly, if we 
find this in a sequence, it is over 12 times more likely to be a core promoter sequence 
than not), however it is also well-known not to occur in many genes. It is interesting 
to ask what is the ‘next best’ motif, that covers core-promoters that do not contain the 
TATA box. However there is no clear candidate for this in the molecular biology 
literature, and it seems clear that any other such pattern (at least, when using simple 
consensus and IUPAC based motifs) has much less sensitivity than TATAWAW. Our 
feeling, however, is that a CHM-based pattern could better capture the variability 
inherent in the TATA-box signal, achieving greater sensitivity, and reducing the pro-
portion of promoters that are believed not to contain a TATA-box. Meanwhile, in 
later CHM-based studies (not done here) we aim to discover patterns for non-TATA 
genes, which may perhaps not be representable with appreciable sensitivity or MCC 
by IUPAC-based patterns. 

The second and third motifs are textbook patterns for the initiator (Inr) region that 
is believed to often occupy a region across and downstream of the transcription start 
site in eukaryotic genomes. Notably, neither of these patterns matches any core pro-
moters in the Reese dataset (and they also match no controls). The Inr region is well-
known to be highly variable, yet it is perhaps surprising that the consenus patterns 
match none of the Reese data. However this becomes less surprising when we re-
member the potential representative inadequacy of these signals.  For example, if we 
have the following positive signals in a dataset: CAT, GGT, CTT, CGA, then their 
simple consensus is CGT, however this does not match any of them. 
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4.2   Discovering Crisp Hypermotifs 

Some preliminary study was first done to test how an EA (of the design in section 3) 
compared with standard hillclimbing, using the same operator and initialization strat-
egy, but for different numbers of CHM chunks. Without exception, we find that the 
EA is able to achieve a better MCC than HC, with p-values never above 0.05 using 
randomization testing (Edgington, 95), and showing increasing significance for larger 
CHMs. We intend to also test simulated annealing on this task, but for the present 
study we chose to directly move to using EAs. Next, we examined the difference 
between the performance of standard IUPAC based motifs and CHMs, using EAs to 
evolve 4-chunk CHMs and 8-base IUPAC-motifs in paired tests, each initialized with 
TATAWAW. In these tests, fitness was a simple linear combination of promoter 
matches and non-promoter matches, using different weightings per pair, to obtain a 
spread of coverage over sensitivity values. Again, we found evidence of statistical 
significance for the superiority of CHMs over IUPAC-Motifs in all cases.  

Meanwhile, in this article our purpose is to demonstrate discovered CHMs that im-
prove upon IUPAC-motifs for core promoters in terms of sensitivity and specificity. 
We show in Table 3 a selection of the results from several runs of the EA producing 
CHMs, with fitness as MCC, and for varying numbers of chunks. In every case (ex-
cept one) we note a better MCC than achieved on these data by TATAWAW. In the 
case of the one with lower MCC than that, this remains interesting because it is a 
short signal from a 3-chunk run initialized with YYCARR; hence it is an initiator 
region signal, but which scores immensely better in discriminatory power than 
YYCARR, and is highly readable (note that S means C or G). A clear correlation is 
noted of MCC against length of signal, suggesting both that core-promoter signal 
material is to be found across a wide region of the core promoter itself, and that 
CHMs are able to capture at least some of the material variability therein. TATA itself 
is preserved in one of the signals, and this is an interesting one:  

{AS-CN-KV}| TA | TA | AS 

This is an example of a short, readable CHM which is clearly a TATA-box signal, but 
is appreciably more discriminative than TATAWAW, dominating it in sensitivity and 
specificity on these data. 

Table 3. Discriminatory ability of crisp hypermotifs discovered by evolutionary computation 

Motif  Sensitivity Specificity MCC 
HT | {AW-TA} | {AR-TA}|{AV-CS-GN-
TR}|{AG-CN-GV-TC}|{AS-SN-TS}|{AS-
SN-TS}|{AN-CS-GB-TN}|{AV-SN-
TB}|{AS-CV-GN-TV} 

42.65 1.49 0.535407 

{CD-GH-TW} | TA | WA | {AV-TA}| 
{AV-SN-TG} | {AS-SN-TS} | {AB-SN-TS} 

42.65 2.02 0.507981 

{CD-GR-TA}| TA | WA | {AV-CS- GS-TD} |
{AV-SN-TC} | {AS-SN-TS} 

40.17 1.89 0.492901 
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Table 3. (Continued) 

YA | TA | {AR-TA} | {AV-CG-GS-TH} | 
{AV-SN-TS} 

41.24 2.31 0.482169 

{AT-TA}| {AW-TA} | AR |  
{AS-CV-GN-TV} | {AS-SN-TC} | {MS-GB} 

34.69 1.2 0.480743 

{AT-TA} | WA | {AV-TA} |  {AS-SN-TA} | 
{AG-CS-CV-TC} | {AS-SN-TB} 

39.115 1.99 0.478691 

{CW-KA} | TA | WA | {AV-CC-GS-TH}| 
{AR-SN-TS} 

43.01 2.87 0.473613 

{CH-GA-TA} | TA | WA | {AV-SS-TD} | 
{AV-SN-TS} 

44.78 3.24 0.473608 

TATA|{AR-TA}|{AV-CT-GN-TD} 36.99 2.48 0.436179 
{AT-CK-GY}| AT | AW | {AD-CG-GA} 35.93 2.29 0.434937 
{AS-CN-KV}| TA | TA | AS 31.50 1.47 0.434379 
{AA-CA-CT-GN} | SS | SS 39.3 8.2 0.292  

5   Conclusions and Future Work 

It is vital for biologists and related scientists to learn a full understanding of low-level 
molecular biology operations, since this is critical to reasoning about the design and 
control of bioactive molecules for a very wide range of activities, ranging through 
medicine, nanotechnology, and crop engineering.  Crisp hypermotifs represent a clear 
potential advance on IUPAC-based motifs for characterizing signals in a readable yet 
discriminatory form, and we have shown here that EAs can be efficiently used to find 
discriminatory CHMs. Further we show evidence that EAs are more suitable than HC 
for this task, although there is much more experimental study to do before we can 
advise on the most appropriate search method, and we expect this to vary anyway 
from task to task.  

Interestingly, CHM-based replacements for the well-known TATA-box and Inr re-
gion have been discovered, which indicate clearly, since they cannot be ‘simplified’ to 
IUPAC-alphabet signals, that the CHM representation is more appropriate for capturing 
the type of variability present in core promoter signals. Most notably, we find that the 
two standard Inr region patterns in the literature do not match any promoter sequences 
at all. However, by moving to CHM space we are able to express patterns that validly 
represent sequences in this region, and with reasonable discriminatory power.  

There are three areas of further work we envisage for the study of CHM-based pat-
terns. First, and obviously, we intend to extend the current work to additional datasets 
and additional bioinformatics tasks, as well as further examine the algorithm and opera-
tor variants. Second, we suspect that evolving ‘decision-lists’, or simple sets of, CHMs 
may  enable us to find classification models for tasks such as promoter prediction that 
are competitive with methods at the accurate/opaque end of the model spectrum.  
Finally, we note that an inherent aspect of the CHM model we have described here is 
that nucleotides are associated in adjacent pairs. However, this need not be fixed, and it 
may not be ideal for many bioinformatics tasks. For example, many DNA binding  
related signals may be better captured by CHMs that capture associations between  
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nucleotides and their associated one helix turn apart. Specifically, we note that we can 
encode a more variable CHM pattern by associating with the binary string a permutation 
of the n nucleotides, such as “261435”, which could indicate, for example, that the first 
chunk expresses the subset of dinucleotides in positions 2 and 6, the second chunk ex-
presses the subset in positions 1 and 4, and so on. In further work we will explore the 
use of EAs to discover CHMs in this larger space. 
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Abstract. Although important contributions have been made in re-
cent years within the field of bioprocess model development and val-
idation, in many cases the utility of even relatively good models for
process optimization with current state-of-the-art algorithms (mostly of-
fline approaches) is quite low. The main cause for this is that open-loop
fermentations do not compensate for the differences observed between
model predictions and real variables, whose consequences can lead to
quite undesirable consequences. In this work, the performance of two
different algorithms belonging to the main groups of Evolutionary Al-
gorithms (EA) and Differential Evolution (DE) is compared in the task
of online optimisation of fed-batch fermentation processes. The proposed
approach enables to obtain results close to the ones predicted initially by
the mathematical models of the process, deals well with the noise in state
variables and exhibits properties of graceful degradation. When compar-
ing the optimization algorithms, the DE seems the best alternative, but
its superiority seems to decrease when noisier settings are considered.

Keywords: Fermentation processes, Online optimization, Differential
Evolution, Real-valued Evolutionary Algorithms.

1 Introduction

In recent years, many efforts have been devoted to the optimization of processes
in bioengineering as a number of valuable products such as recombinant pro-
teins, antibiotics and amino-acids are produced using fermentation techniques.
A problem that has received special attention is the dynamic optimization of fed-
batch bioreactors. This process has traditionally been conducted on the substrate
feed rate as key manipulated variable in operation. The optimization problem
is therefore solved before the beginning of the fermentation process (open-loop
optimal control) and consists on finding an expression or a sequence of values for
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the feeding rate that maximizes an objective function that represents the process
productivity, subject to the constraints represented by a dynamical model.

Several optimization methods have been applied to solve this kind of problem.
It has been shown that for relatively simple bioreactor systems, which are ex-
pressed in differential equations models, the optimization problem can be solved
analytically from the Hamiltonian function by applying the Minimum Principle
of Pontryagin [14]. However, in the majority of the cases reported, determination
of the optimal feed rate profile has a problem of singular control.

Numerical methods make a distinct approach to dynamic optimization. The
gradient algorithms are used to adjust the control trajectories in order to iter-
atively improve the objective function [3]. In contrast, dynamic programming
methods discretize both time and control variables to a predefined number of
values. A systematic backward search method in combination with the simula-
tion of the system model equations is used to find the optimal path through the
defined grid. However, in order to achieve a global minimum, the computational
burden is very high [3].

An alternative comes from the use of algorithms from the Evolutionary Com-
putation (EC) field, which have been used in the past to optimize nonlinear
problems with a large number of variables. These techniques have been applied
with success to the optimization of feeding or temperature trajectories [8][1],
and, when compared with traditional methods, usually perform better [12][5].

However, even when the mathematical models used for open-loop optimiza-
tion are reliable and validated by experimentation, in a real environment several
sources of noise can contribute to changes in the observed values of the state
variables. These issues are of particular importance when dealing with recom-
binant high-cell density fermentations, as the process, besides the nonlinearities
exhibited, tends to change dramatically upon some events, like induction. Also,
it is likely that there exists a time-variance of both yield and kinetic parameters
not contemplated in most process models. These scenarios have an important
impact on the experimental results that end up being worse than the ones pre-
dicted after running the offline optimization.

An alternative to cope with model inaccuracies is the use of online opti-
mization algorithms that periodically generate new solutions as the process is
running, making use of the measurement of relevant state variables for update
of the internal model. Indeed, unlike the previously stated alternatives where
the optimization is conducted prior to the experimental process, in this case,
the optimization is performed simultaneously, taking into account values of the
state variables measured by sensors within the fermentation process.

In this work, the performance of two different algorithms belonging to the
main groups of Evolutionary Algorithms (EA) and Differential Evolution (DE)
is compared in this task of online optimization. These methods were the ones
that performed better in offline optimization, in a previous study [6]. Three case
studies were taken from literature in order to test the performance of both algo-
rithms. These are used to perform an offline optimization and then a simulation
of a real-world fermentation is conducted. The relevant state variables are, in
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each case, disturbed by adding a small noise value, at regular periods of time.
The behavior of both algorithms is compared, as well as the performance of the
initial optimization results given the perturbations considered.

The paper is organized as follows: firstly, the fed-batch fermentation case
studies are presented; next, the algorithms of DE and a real-valued EA are
described; next, the results of the application of the different algorithms to the
case studies are presented; finally, the paper presents a discussion of the results,
conclusions and further work.

2 Case Studies: Fed-Batch Fermentation Processes

The case studies used in this work are related to the simulation of fed-batch fer-
mentation processes. In these processes there is an addition of certain nutrients
along the process, in order to prevent the accumulation of toxic products, allow-
ing the achievement of higher product concentrations. During this process the
system states change considerably, from a low initial to a very high biomass and
final product concentrations. This dynamic behavior motivates the development
of optimization methods able to find the optimal input feeding trajectories in
order to improve the process performance. For the optimization of the process
white box mathematical models are developed, based on differential equations
that represent the mass balances around the relevant state variables.

2.1 Case Study I

This case study is related to a fed-batch recombinant Escherichia coli fermenta-
tion process which was previously optimized in [10][11].

The dynamical model can be described by the following equations:

dX

dt
= (μ1 + μ2 + μ3)X − DX (1)

dS

dt
= (−k1μ1 − k2μ2)X +

Fin,SSin

W
− DS (2)

dA

dt
= (k3μ2 − k4μ3)X − DA (3)

dO

dt
= (−k5μ1 − k6μ2 − k7μ3)X + OTR − DO (4)

dC

dt
= (k8μ1 + k9μ2 + k10μ3)X − CTR − DC (5)

dW

dt
� Fin,S (6)

where X , S, A, O, C represent biomass, glucose, acetate, dissolved oxygen and
carbon dioxide concentrations (in g/kg); μ1 to μ3 are time variant specific growth
rates and ki are constant yield coefficients. D is the dilution rate, Fin,S the
substrate feeding rate (in kg/h), W the fermentation weight (in kg), OTR and
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CTR are the oxygen and carbon dioxide transfer rates. The kinetic behaviour
is given by the specific growth rates μ1 to μ3, which are non-linear functions of
the state variables. This dependence can be found in [9].

The purpose of the optimization is to determine the feeding rate profile
(Fin,S(t)) that maximizes the productivity of the process, defined as the units
of product (recombinant protein) formed per unit of time. In this case, this is
usually related with the final biomass obtained. Thus, a performance index (PI)
is defined by the following expression:

PI =
X(Tf)W (Tf ) − X(0)W (0)

Tf
(7)

The state variables are initialized with the values: X(0) = 5, S(0) = 0, A(0) =
0, W (0) = 3. Due to physical limitations the value of Fin,S(t) must be in the
range [0.0; 0.4] and W (t) ≤ 5. The final time (Tf ) is set to 25 hours.

2.2 Case Study II

This case study handles a hybridoma reactor described by the equations [12]:

dXv

dt
= (μ − kd)Xv − F1 + F2

V
Xv (8)

dGlc

dt
=

F1

V
Glcin − F1 + F2

V
Glc − qGlcXv (9)

dGln

dt
=

F2

V
Glnin − F1 + F2

V
Gln − qGlnXv (10)

dLac

dt
= qLacXv − F1 + F2

V
Lac (11)

dAmm

dt
= qAmmXv − F1 + F2

V
Amm (12)

dMab

dt
= qMabXv − F1 + F2

V
Mab (13)

dV

dt
= (F1 + F2) (14)

where the state variables Xv, Glc, Gln, Lac, Amm, Mab, V are the concentra-
tions of viable cells, glucose, glutamine, lactate, ammonia, monoclonal antibodies
and culture volume, respectively. The control variables F1 and F2 are the volu-
metric feed rates. The complete kinetic expressions are given in [12].

A single feed problem can be obtained by considering F = F1 + F2. The
target of the optimization process, in this case, is to increase the total amount
of monoclonal antibodies produced. So, the PI is given by:

PI =
∫ Tf

0

−qMabXv(t)V (t) (15)
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Initialization values for the state variables are the following:Xv=2.0×108cells/L,
Glc = 25g/L, Gln = 4g/L, Lac = 0g/L, Amm = 0g/L, Mab = 0g/L, V = 0.8L.
Tf is 10days and the value of V (t) is constrained by V (t) ≤ Vmax.

2.3 Case Study III

This system is a fed-batch bioreactor for the production of ethanol by Saccha-
romyces cerevisiae, firstly studied by Chen and Huang [4]. The aim is to find the
substrate feed rate profile that maximizes the final amount of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(16)

dx2

dt
= −10g1x1 + u

150 − x2

x4
(17)

dx3

dt
= g2x1 − u

x3

x4
(18)

dx4

dt
= u (19)

where x1, x2 and x3 are the cell mass, substrate and ethanol concentrations
(g/L), x4 the volume of the reactor (L) and u) the feeding rate (L/h).

On the other hand, the kinetic variables g1 and g2 are given by:

g1 =
0.408
1 + x3

16

x2

0.22 + x2
(20)

g2 =
1

1 + x3
71.5

x2

0.44 + x2
(21)

The performance index (PI) is given by: PI = x3(Tf )x4(Tf ).
The final time is set to Tf = 54 hours, and the initial values for the state

variables are the following: x1(0) = 1, x2(0) = 150, x3(0) = 0 and x4(0) =
10. Additionally, there are physical constraints over the variables, namely: 0 ≤
x4(t) ≤ 200 for all time points and the feeding rate 0 ≤ u(t) ≤ 12.

3 The Optimization Algorithms

The aim of the offline optimization is to find the feeding trajectory, represented
as an array of real-valued variables, that yields the best performance index. Each
variable will encode the amount of substrate to be introduced into the bioreactor,
in a given time interval, and the solution will be given by the temporal sequence
of such values. In this case, the size of the solution will be determined based on
the final time of the process (Tf ) and the discretization step (d) considered in the
numerical simulation of the model, given by the expression: Tf

d . To reduce the
solution size, feeding values were defined only at certain equally spaced points,
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and the remaining values are linearly interpolated. The size of the genome (G)
becomes G = Tf

dI + 1, where I stands for the number of points within each
interpolation interval. The value of d used in the experiments was d = 0.005, for
all case studies and the value of I is 200, 100 and 500 in case studies I, II and
III, respectively.

The evaluation process, for each solution, is achieved by running a numerical
simulation of the defined model, giving as input the feeding values in the solution.
The numerical simulation is performed using a linearly implicit-explicit (IMEX)
Runge-Kutta scheme, used for stiff problems, included in package OdeToJava
[2]. The fitness value is then calculated from the values of the state variables
according to the PI defined for each case.

3.1 Differential Evolution

Differential Evolution (DE) is a population-based approach to function opti-
mization that generates trial individuals by calculating vector differences be-
tween other randomly selected members of the population. In this work, a vari-
ant of the DE algorithm called DE/rand/1 was considered that uses a binomial
crossover [13]. In this case, the following scheme is followed, in every generation,
for each individual i in the population:

1. Randomly select 3 individuals r1, r2, r3 distinct from i;
2. Generate a trial vector based on: t = r1 + F · (r2 − r3)
3. Incorporate coordinates of this vector with probability CR;
4. Evaluate the candidate and use it in the new generation if it is at least as

good as the current individual.

3.2 Real-Valued EA

In this work, a real-valued EA was adopted that provided good results in previous
work [11][6]. A brief presentation of the algorithm is given in this section. A more
detailed description can be found in those references. The EA uses real-valued
representations and a number of mutation and crossover operators to create new
solutions, namely:

– Random Mutation, which replaces one gene by a new randomly generated
value, within the allowed range [7];

– Gaussian Mutation, which adds to a given gene a value taken from a Gaussian
distribution, with a zero mean.

– the standard Two-Point crossover;
– the Arithmetical crossover [7];
– the Sum crossover, where the offspring genes denote the sum or the subtrac-

tion of the genes in the parents.

The mutation operators are applied to a number of genes randomly generated
between 1 and N (value of N was 10 in the experiments). In each generation
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half of the population is kept from the previous generation and the remaining is
replaced by the new individuals created using the above reproduction operators.
Selection is performed by using a ranking of the individuals in the population
and applying a roulette wheel scheme.

4 Online Optimization

During the fermentation process, some of the state variables can be measured,
but its values are scarcely used for closed-loop optimization purposes, and are
rather employed to evaluate qualitatively the performance of the process. How-
ever, it is possible to develop dynamic optimization algorithms capable of timely
reacting to this new knowledge generated by updating the corresponding internal
model and generating new solutions.

EAs and DE are promising approaches to this real-time optimization task,
since they keep a population of solutions that can be easily adapted to perform
re-optimization. Indeed, a population of solutions previously obtained can be
evaluated under the new scenario and better adapted solutions can be created
through the use of reproduction operators. The fact that a set of solutions is
kept, and not only the best solution, makes a faster adaptation to new conditions
possible, while taking advantage of previous optimisation efforts.

In this work, an online optimization strategy based on EAs and DE is pro-
posed, working in two stages: before the fermentation process starts, an offline
optimization is conducted with the algorithms described in the previous sections.
After this preliminary optimization, online optimization algorithms use informa-
tion gathered by measuring the value of relevant state variables to improve the
PI during the real fermentation process. These algorithms react by updating its
internal model and reaching a new solution, that is available to be sent back to
the fermentation monitoring software.

The version of the EA/DE used to perform online optimization is similar to
the ones described before. When new information regarding the state variables
is received, the following steps are followed by both EA and DE:

1. a starting point (in time) is determined for the re-optimized solution, by
adding the time label of the received data with the predicted time necessary
to compute a new solution (since it is impossible to reach and therefore apply
a solution before that time).

2. the last available population is adapted by removing from the genome of each
individual the genes that encode feeding values for elapsed time periods.

3. half of the individuals in the population are replaced by new randomly gen-
erated solutions (these individuals are chosen randomly, although the best
individual is always kept). This helps in maintaining genetic diversity, a
specially needed feature for the optimization in changing landscapes.

4. the internal model of the fermentation used by the EA/DE is updated with
the new information available from the real process and each of the individ-
uals is re-evaluated taking this new knowledge into consideration.
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5. the normal process of the DE or EA proceeds for a given number of iterations.
6. the best solution obtained is sent to the fermentation process and can be

used in the real process.

5 Experiments

5.1 Setup

In this study, and given time and physical constraints, real fermentations were
not conducted and instead these were replaced by simulating the fermentation
process and adding noise to state variables. This process is implemented by
considering two interacting components: an optimizer, that implements the op-
timization algorithm (DE or EA), and a noise simulator (NS), that simulates
the real fermentation process adding noise to the state variables.

This is performed by considering that there is a deviation between the model
prediction and the behaviour of the process due to inaccuracies of the model.
Therefore, for each sampling time, the state variables that represent the
real process are obtained from the simulated variables by adding white noise.
These new values of the state variables would originate a major deviation of the
process from its optimal behavior, which had been defined during offline opti-
mization. To partially compensate for this deviation, the new values. of the state
variables will be used by the optimization algorithm to calculate a new feeding
profile.

The following sequence of events takes place:

1. an offline optimization is performed by the optimizer and its results are
passed on to the NS, used to compute the predicted values of the state
variables. The optimizer stops and waits for new information.

2. the variable t, which stores the simulated time in the NS is set to t = 0.
3. while t < Tf (where Tf denotes the final time of the fermentation process)

the following steps are executed:
(a) the values of all state variables at time t are disturbed by the NS by

adding/ subtracting noise, given by the original value multiplied by a
value taken from an uniform distribution with range [0, U ]. The new
values of the state variables are sent to the optimizer.

(b) the optimizer receives this information and runs the steps for online
optimization listed in the previous section. The best solution reached is
sent to the NS that updates its model accordingly.

(c) the NS updates t = t + Δt

Each run for the initial optimization is stopped after 100, 000 function evalu-
ations. For the DE, the population size is set to 20, F was set to 0.5, CR to 0.6.
In terms of the real-valued EA, the population size is set to 200. The value of
Δt was set to 1 (h.) in case study I, 0.5 (d.) in II and 2 (h.) in III.
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5.2 Results

The results will be presented in terms of the mean of the PI values obtained in 30
runs, as well as 95% confidence intervals. The Tables 1, 2 and 3 show the results
of the algorithms obtained on case studies I, II and III, respectively. In every case,
the first column represents the parameter U of the uniform representation used
to generate noise (an increase in this parameter implies noisier setups). The next
two columns show the results for the DE and the EA during offline optimization;
columns 4 and 5 show the results obtained for the same algorithms, but applying
the noise disturbances without changing the solutions of offline optimization
(simulating the case where there are discrepancies between model predictions
and real processes but without intervention of online optimizers) and, finally,
the last two columns show the results obtained by the online optimization.

Table 1. Results obtained by the DE and EAs in case study I

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 9.47 ± 0.00 8.85 ± 0.04 4.67 ± 0.70 4.79 ± 0.73 9.11 ± 0.14 8.72 ± 0.14
0.02 9.47 ± 0.00 8.83 ± 0.05 4.41 ± 0.75 4.69 ± 0.78 8.80 ± 0.24 8.53 ± 0.25
0.03 9.47 ± 0.00 8.81 ± 0.05 4.20 ± 0.76 4.35 ± 0.81 8.47 ± 0.34 8.17 ± 0.35

Table 2. Results obtained by the DE and EAs in case study II

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 394.7 ± 0.2 386.3 ± 0.8 371.7 ± 8.5 367.9 ± 7.1 386.2 ± 4.8 379.8 ± 3.8
0.02 394.7 ± 0.2 385.2 ± 0.7 353.9 ± 14.9 351.2 ± 12.3 374.1 ± 9.2 371.8 ± 8.3
0.03 394.7 ± 0.2 386.1 ± 0.9 330.0 ± 23.5 343.0 ± 15.4 364.5 ± 13.0 367.6 ± 11.0

Table 3. Results obtained by the DE and EAs in case study III

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 20405 ± 4 20374 ± 9 20097 ± 133 20236 ± 108 20421 ± 115 20408 ± 119
0.02 20407 ± 3 20379 ± 7 19832 ± 305 19986 ± 244 20404 ± 243 20392 ± 242
0.03 20405 ± 5 20376 ± 9 19711 ± 357 19938 ± 393 20282 ± 317 20236 ± 335

The first conclusion to draw from the results in that, in every case study,
even a low level of noise is enough to clearly disturb the results, although that
effect is clearly more visible in case study I. In fact, the levels of noise stud-
ied are certainly within the range of the differences observed between model
predictions and experimental results in biotechnological processes. However, the
consequences in terms of process performance when an open-loop fermentation
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(without online optimization) is performed are quite extreme, implying that in
many cases the utility of even relatively good models for process optimization
with current state-of-the-art optimization techniques (mostly offline approaches)
is quite low. Therefore, the results obtained with online optimization strategies
indicate that the reward obtained in terms of process productivity is probably
enough to justify its implementation and the corresponding costs.

In fact, the results obtained for all 3 case studies are quite close to the ones
predicted by offline optimization without added noise, thus implying that the
optimization scheme is robust to the levels of noise studied in this work. Fur-
thermore, the degradation of the results that is caused by the increase of U is
quite graceful, as an increase in U does not cause dramatic effects in the PI.

A comparison of the results obtained by both optimization algorithms show
that DE seems to be more effective than the EAs. The difference is very clear
when offline optimization is performed, but decreases when the level of noise
increases. In fact, the differences for U = 0.02 and 0.03 are not significant from
a statistical perspective and in case study II, the EA even outperforms the DE
for U = 0.03. Nevertheless, if an alternative has to be chosen the DE still has
an advantage, since it shows the best results (mean) in almost all scenarios.

6 Conclusions and Further Work

In this work, the task of optimizing feed profiles for fed-batch fermentation
problems was approached by proposing optimization algorithms, such as EAs and
DE, that are able to implement online optimization strategies, i.e., to perform the
optimization simultaneously with the real process. The proposed approach was
validated by conducting a number of experiments that used a noise simulator to
emulate the differences between the values predicted by the mathematical model
and the real values in the fermentation project. The results of the experiments
show that even small differences lead to important disruptions in the behavior
that was predicted by offline optimization.

The proposed approach to online optimization deals well with the noise and
exhibits properties of graceful degradation. When comparing the optimization
algorithms, the DE seems the best alternative, but its superiority that seems to
decrease when noisier settings are considered.

In future work, the priority is to validate these results by implementing this
approach with a real fed-batch fermentation process. Furthermore, other case
studies will be tested and distinct optimization algorithms will be taken into
account.
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Abstract. Directed search methods and probabilistic approaches have
been used as two alternative ways for computational protein design. This
paper presents a hybrid methodology that combines features from both
approaches. Three estimation of distribution algorithms are applied to
the solution of a protein design problem by minimization of contact
potentials. The combination of probabilistic models able to represent
probabilistic dependencies with the use of information about residues in-
teractions in the protein contact graph is shown to improve the efficiency
of search for the problems evaluated.

Keywords: estimation of distribution algorithm, protein design, energy
minimization algorithms.

1 Introduction

The goal of protein design is to find sequences of aminoacids with desired
structural and functional properties. The problem has been approached by the
application of directed search methods which cast the search as an optimization
method. The approach requires the definition of a simplified model of the pro-
teins, a fitness function that associates a value to each solution according to its
’quality’, and a search procedure to efficiently sample the search space. In the
field of protein design, these methods have been called “directed approaches to
protein design”.

Another class of methods has been covered under the umbrella of “probabilis-
tic approaches to protein design” [14]. They use site-specific aminoacid prob-
abilities rather than specific sequences and are usually employed in domains
where the information available about the problem is incomplete. Probabilistic
approaches include the use of consensus sequences [8] to determine low energy
sequences and other methods where the probabilities learned can be used to
guide search algorithms.

In this paper, we present a different approach which is based on the use of es-
timation of distribution algorithms (EDAs) [7,9,13]. EDAs are evolutionary algo-
rithms that construct an explicit probability model of a set of selected solutions.

E. Marchiori, J.H. Moore, and J.C. Rajapakse (Eds.): EvoBIO 2007, LNCS 4447, pp. 247–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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EDAs have been used for protein structure prediction in simplified models [17],
protein side chain placement [18] and de novo peptide design [2]. Their suitabil-
ity to deal with protein problems is given by the incorporation of machine learning
techniques in the construction of the models. These learning algorithms
automatically extract relevant regularities and complex structural patterns
shared by promising solutions. The information learned can be compactly stored
in the probabilistic model, which is later used to guide the exploration of the search
space. EDAs are also different from probabilistic approaches that use probabilities
to bias the search (e.g. Monte Carlo based techniques [21]) and where probabilities
are unchanged during the search.

The paper is organized as follows. In the following section we present the
energy function and introduce the problem of finding the aminoacid sequence
with the lowest energy. Section 3 describes the main characteristics of EDAs and
introduces the EDAs based on tree models used in our application. Section 4 gives
a description of the experimental framework. The numerical results are shown
in Section 5. Section 6 presents the main conclusions of our work and discuss
future work.

2 Approach to Protein Design: Finding the Sequence
with the Lowest Energy

In this section, we introduce the problem of finding the aminoacid sequence
with the lowest energy for a given energy function. We use Xi to represent a
discrete random variable. A possible value of Xi is denoted xi. Similarly, we
use X = (X1, . . . , Xn) to represent an n-dimensional random variable and x =
(x1, . . . , xn) to represent one of its possible values.

We will approach the protein design problem following a strategy that is based
on the optimization of contact functions. Contact potentials or scoring functions
[19,20] measure how likely it is for a sequence to fold to a given structure.
Although the potential functions have been mainly used to distinguish native
from decoy structures [19,20], they can also be employed to study the distribution
of native-like features in sequence space [11].

In [10,11], the sequence evolutionary selection mechanisms are analyzed fo-
cusing on the stability energy of sequences. Although the ’survival probability’
of a protein sequence depends on a number of other factors such as protein func-
tion and protein flexibility, the sequence-structure relationship can be analyzed
in terms of energy. The analysis assumes that native sequences were selected
because they were highly probable as a function of energy.

We will denote the native sequence corresponding to the structure σ as xσ.
E(x, σ) is the energy of sequence x in structure σ and Eσ = E(xσ) is the native
energy of sequence xσ in structure σ. The quantity N(Eσ) is the number of
sequences whose energy in σ would be no greater than that of the actual native
sequence. N(Eσ) is called the evolutionary capacity of structure σ because it
reflects how far the current state of molecular evolution σ is from the possible
optimum in terms of energy [11].
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Given a protein structure σ and an energy function defined on the space of
aminoacid sequences with cardinality 20n, where n is the number of aminoacids,
we address the problem of finding the lowest energy sequence among the 20n

possible solutions.

2.1 Energy Function

The TE13 potential function was introduced in [19] to correctly rate the native
structure in relation to a set of decoy structures. This potential function was
calculated using a linear programming approach.

Before presenting the function, let us to introduce some notation. uαβ(r)
will denote a step potential between a pair of aminoacids α and β, and pαβ

its asociated parameter calculated from solving linear inequalities. The distance
between the geometric centers of two aminoacid side chains, r, is divided into
13 steps between 2 and 9 Å. The first step along r is between 2 and 3 Å, and
the rest of the 12 steps are 0.5 Å each. Each of the uαβ(r) (as a function of the
index β) is 1 only at one of the windows (steps) and zero elsewhere.

The total potential energy is:

E(x, σ) =
∑

α,β

pαβnαuαβ(r) ≡
∑

λ

pλnλ (1)

where index α parameterizes the type of the two interacting aminoacids. nα is
the number of contacts of a specific type found when threading the complete
sequence x into the known shape σ. nα and uαβ(r) are combined together to
form nλ, the number of contacts of a specific type and at a specific distance, λ, of
structure σ. For each of the λ-s, there is a corresponding independent parameter
pλ calculated from solving linear inequalities. The total number of parameters
is ((21 × 20)/2) × 13 = 2730.

TE13 is defined for the distances between the side chain centers that have
to be given. Therefore, the side chain center has to be given and from this
information we calculate the distance r for each pair of residues. We construct
the contact graph of each protein considering the existence of edges between two
vertices if the corresponding residues have contact distances below 9Å.

3 Estimation of Distribution Algorithms

We will work with positive probability distributions denoted by p(x). Simi-
larly, p(xS) will denote the marginal probability distribution for XS , where
S ⊂ {1, . . . , n}.

In EDAs, each individual represents one possible solution and it is encoded us-
ing the vector representation introduced above. A key characteristic and crucial
step of EDAs is the construction of the probabilistic model.

The simplest EDA is the univariate marginal distribution algorithm (UMDA)
which uses a probabilistic model where all variables are considered independent.
The probabilistic model used by UMDA is described by Equation (2).
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pUMDA(x) =
n∏

i=1

p(xi) (2)

The probability of each solution is equal to the product of the variables’
univariate probabilities.

In this paper, we will apply UMDA to the minimization of contact potentials.
We also propose the application to the protein design problem of a model that
captures bivariate dependencies between the variables. This probabilistic model
is based on a tree where each variable may depend on at most another variable
that is called the parent.

A probability distribution pTree(x) that is conformal with a tree is defined as:

pTree(x) =
n∏

i=1

p(xi|pa(xi)) (3)

where pa(xi) denotes a configuration of Pa(Xi), the parent of Xi in the tree,
and p(xi|pa(xi)) = p(xi) when Pa(Xi) = ∅, i.e. Xi is the root of the tree.
The distribution pTree(x) itself will be called a tree model when no confusion is
possible. Probabilistic trees are represented by acyclic connected graphs.

The construction of the tree structure from data implies the detection of
the most important bivariate interactions between the variables. This can be
done applying statistical independence tests [15] or methods based on the analy-
sis of the mutual information between variables as in [1]. We follow the sec-
ond approach. The pseudocode of the tree-based EDA (Tree-EDA) is shown in
Algorithm 1.

Algorithm 1: Tree-EDA

1 D0 ← Generate M individuals randomly

2 l = 1
3 do {
4 Ds

l−1 ← Select N ≤ M individuals from Dl−1 according to a selection method

5 Compute the univariate and bivariate marginal frequencies ps
i (xi|Ds

l−1) and
ps

i,j(xi, xj |Ds
l−1) of Ds

l−1

6 Calculate the matrix of mutual information using univariate and bivariate
marginals

7 Calculate the maximum weight spanning tree from the matrix of mutual
information

8 Compute the parameters of the model

9 Dl ← Sample M individuals (the new population) from the tree

10 } until A stop criterion is met

As presented in Algorithm 1, the bivariate probabilities are initially calculated
for every pair of variables. From these bivariate probabilities, the mutual infor-
mation between variables is found. To construct the tree structure, an algorithm
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introduced in [3], that calculates the maximum weight spanning tree from the
matrix of mutual information between pairs of variables, is used. To sample the
solutions from the tree, we have used probabilistic logic sampling (PLS) [5].

One problem faced by the algorithms that learn probabilistic models within
EDAs is the arousal of spurious correlations between variables. This is due,
among other factors, to the small datasets used to estimate the probabilities.
Spurious correlations deteriorate the accuracy of the models and negatively in-
fluence the efficiency of the search. Our initial experiments showed that the
quality of the learned trees could be improved when the interactions represented
in the tree structure were constrained to those between residues that are making
contacts in the contact graph of the protein as it was defined in Section 2.1.
Therefore, one variant of the tree learning algorithm constrains the calculation
of bivariate probabilities and mutual information to those pairs of variables cor-
responding to residues that are in contact in the contact graph. The variant
of Tree-EDA that restricts the interactions represented by the tree structure to
interacting pairs of variables is called Tree-EDAr.

Tree-EDAr can be considered as an example of the class of EDAs that use a
priori problem information in order to improve the search. However, the informa-
tion about the structure does not completely determine the final structure of the
model as it is common in other EDAs that employ a priori problem information
[12,16]. Instead, the mutual information between variables in the current selected
population is taken into account to define the final structure of the probabilistic
model.

4 Experiments

The objectives of our experiments are:

– To determine the ability of the probability model used by EDAs to capture
relevant features of the protein design problem considered.

– To evaluate the capacity of UMDA, Tree-EDA and Tree-EDAr to solve the
energy minimization problem.

– To establish the influence of using information about the contact graph of
the protein in the quality of the solutions obtained.

To search sequences with the lowest energy, we selected a set of 61 protein
instances1 from an initial set of 3901 protein instances2. This is a reduced and
non-redundant set of protein shapes used for fold recognition. It is a good rep-
resentative of the known folds of the protein databank [10]. For each protein,
information about the side chain geometric centers of the protein is available3.
1 The list of the selected sequences is available from http://www.sc.ehu.es/ccwbayes/

EDA/EDAProteinProblems.html
2 These instances have been obtained from Prof. Leonid Meyerguz’s page:

http://www.cs.cornell.edu/∼leonidm/counting/protein− list.txt
3 http://www.cs.cornell.edu/∼leonidm/counting/pdb−sample.tar
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Fig. 1. Contact matrices of proteins pdb4clg-A (a) and pdb1aoo (b). Most frequent
interactions found by Tree-EDA in the first generation for proteins pdb4clg-A (c) and
pdb1aoo (d).

4.1 Parameters of the Algorithms

The parameters of the EDAs have been set as follows. The population size was
set at 5000. The maximum number of generations is 500. Truncation selection
with parameter T = 0.15 has been used. In this selection scheme, the best
T · N individuals of the population are selected to construct the probabilistic
model. We apply a replacement strategy called best elitism in which the selected
population at generation t is incorporated into the population of generation
t + 1, keeping the best individuals found so far and avoiding to revaluate their
fitness function. The algorithm stops when the maximum number of generations
is reached or the selected population has become too homogeneous (no more
than 10 different individuals).

4.2 Design of the Experiments

To compare the results of the algorithms we conducted 50 experiments for each
instance and algorithm. The performance of the algorithms was evaluated con-
sidering the fitness of the best solution found in each experiment, the best fitness
among all the best solutions found, and the number of experiments in which the
best fitness overall the 50 experiments was found.

To determine whether differences between the fitness of the solutions found
by the algorithms are statistically significant the Kruskal-Wallis test [6] was
employed. The test significance level was 0.05.
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Fig. 2. Improvement in the energies of the solutions found by Tree-EDA and Tree-
EDAr with respect to those found by UMDA for the 61 protein instances. a) Difference
between the average energies of Tree-EDA and UMDA. b) Difference between the
average energies of Tree-EDAr and UMDA.

5 Numerical Results

As an initial experiment, we investigated if there was any mapping between the
statistical dependencies learned by the tree learning algorithm and the structure
of the problem. We stored the tree structures learned in the first generation of
Tree-EDA for protein instances pdb4clg-A and pdb1aoo (see footnote 1). The
algorithm was run 1000 times for each instance. We counted the number of times
each edge appeared in the trees. Figure 1a) and 1b) show the contact matrices
constructed for edges that were in at least 50 of the 1000 trees learned. The
similarity between the structures learned and the original contact matrices of
the graphs (Figures 1c) and 1d)) is remarkable.

The decision of analyzing only the structures learned in the first generation
was motivated by the fact that, as the EDA evolves, diversity in the population
is lost and spurious correlations due to sample arise. The possibility of captur-
ing many of the interactions that are in the original contact graph shows that
EDAs are able to recover problem information from the protein structure from
a statistical analysis of the data generated along the evolution.

We evaluated the performance of EDAs to sample the space of low energy
sequences for function TE13. We do not have information about the actual
lowest energy sequences. Therefore, the comparison between algorithms can be
done only in relative terms. UMDA, Tree-EDA and Tree-EDAr were run on the
61 instances of the protein benchmark. In Table 1, the results of Tree-EDA and
Tree-EDAr for each of the instances are presented. The table shows the best
value of the fitness4 found in all the experiments (−f), the number of times the
best solution has been found (S) and the average fitness (f̄) of the solutions. It
can seen from the table that, in terms of best solution found and the average

4 Original fitness values are negative, however notice that the table actually shows
their opposite values.
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Table 1. Results of the Tree-EDA and Tree-EDAr

pdb Tree-EDA Tree-EDAr pdb Tree-EDA Tree-EDAr

−f S −f̄ −f S −f̄ −f S −f̄ −f S −f̄
1afp 1493.46 1 1458.46 1494.83 1 1468.78 1zwd 658.84 1 621.14 663.07 2 642.17
1apq 1426.39 1 1367.53 1442.43 2 1405.37 2mrb 806.87 1 784.90 808.44 4 797.63
1bba 800.31 7 775.36 800.31 20 788.67 2pta 882.57 1 837.70 903.44 1 867.30
1bh4 758.44 3 734.41 759.42 4 743.75 3ins-A 446.54 2 418.86 446.54 12 428.22

1bkv-A 425.23 25 411.48 425.23 56 419.71 3znf 679.72 1 668.07 682.03 7 670.64
1bqf-A 479.03 5 458.60 479.03 18 466.56 8tfv-A 368.23 80 367.04 368.23 85 367.42
1btd-A 703.33 1 678.32 726.62 1 694.10 1aoj-A 1252.12 1 1163.01 1258.01 1 1226.78
1ciq-B 452.90 45 449.99 452.90 62 451.01 1b7d-A 1750.34 1 1666.33 1822.28 1 1743.25
1clv-I 926.78 1 892.70 933.72 4 913.21 1bbr-H 3615.33 1 3458.34 3947.21 1 3798.36
1dec 947.68 1 907.02 955.11 3 924.31 1bf0 1665.05 1 1596.53 1711.79 1 1643.32

1dfn-A 695.52 1 668.45 703.26 2 676.09 1cdq 2122.12 1 2043.20 2192.00 1 2100.08
1eiu 907.32 6 898.07 908.19 1 903.53 1doy 3324.07 1 3266.49 3373.96 1 3325.90
1gnf 1167.75 1 1116.09 1172.37 1 1147.62 1ehd-A 3243.84 1 3159.73 3282.18 1 3236.33
1gps 1323.88 1 1284.45 1329.07 1 1301.12 1eo0-A 2242.45 1 2070.38 2389.50 1 2227.81
1iva 1300.78 1 1282.35 1301.56 3 1294.18 1fxr-A 1924.04 1 1831.44 1988.22 1 1910.87
1ktx 1002.84 1 941.52 1016.46 1 960.75 1gam-A 2356.16 1 2266.02 2465.97 1 2386.30

1mct-I 766.62 1 745.84 771.84 2 757.00 1gat-A 1495.89 1 1401.05 1513.75 1 1457.24
1mea 691.47 2 664.44 691.47 7 679.30 1hd0-A 2282.86 1 2179.34 2331.39 1 2252.34
1mhu 907.43 1 880.05 907.43 4 889.83 1if1-A 2984.11 1 2840.86 3051.07 1 2993.47
1myn 1289.52 1 1230.85 1299.16 1 1263.31 1imp 2478.64 1 2374.79 2513.36 1 2458.20
1pnh 687.83 1 669.68 784.83 1 691.89 1ivl-A 3338.91 1 3195.89 3470.71 1 3407.85
1pyc 1101.69 1 1050.11 1123.14 1 1083.41 1kst 2166.32 1 2080.83 2203.51 1 2138.72
1qdp 1104.75 1 1060.80 1114.81 2 1083.88 1nra 1888.56 1 1806.72 1914.91 1 1863.79

1qfn-B 338.55 28 330.84 338.55 65 335.45 1pba 2154.58 1 2033.58 2199.66 1 2112.74
1qk6-A 816.63 1 780.12 817.42 2 797.95 1qd9-A 3929.16 1 3762.24 4026.28 1 3952.83

1res 1038.58 1 981.14 1069.92 1 1026.72 1vfy-A 1857.82 1 1797.28 1912.55 1 1844.27
1roo 975.74 32 969.57 977.36 1 971.67 1whf 2443.19 1 2293.68 2487.02 1 2424.10
1sh1 1405.55 1 1348.21 1436.10 1 1386.09 2hgf 2923.62 1 2848.07 3046.69 1 2960.59
1sp2 673.46 1 608.36 673.46 18 652.37 2r63 1829.48 1 1678.30 1912.22 1 1802.58
1ter 528.31 4 503.82 528.31 26 513.96 4mt2 1864.31 1 1809.06 1884.13 2 1849.47
5cro 1527.11 1 1449.72 1605.88 1 1516.00

10 20 30 40 50 60
−40

−20

0

20

40

60

80

100

Protein instances

D
iff

er
en

ce
 in

 th
e 

en
er

gi
es

10 20 30 40 50 60
−50

0

50

100

150

200

Protein instances

D
iff

er
en

ce
 in

 th
e 

en
er

gi
es

a) b)

Fig. 3. Improvement in the energies of the solutions found by Tree-EDA and Tree-
EDAr with respect to those found by UMDA for the 61 protein instances. a) Difference
between the energies of the best solutions overall run found by Tree-EDA and UMDA.
b) Difference between the energies of the best solutions found by Tree-EDAr and
UMDA.
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fitness, Tree-EDAr consistently finds better results than Tree-EDA. However,
for most of instances, the best solution is found only once.

Figures 2 and 3 show the improvements achieved by Tree-EDA and Tree-
EDAr with respect to UMDA. Negative values mean that UMDA outperformed
the other algorithm. Figures 2 a), b) show the improvement taking into account
the average energies calculated from the best solution found in each of the 50
experiments conducted. In Figure 3 a), b), the improvement was calculated con-
sidering the absolute best solution found among the 50 experiments.

The application of the Kruskal-Wallis test found significant statistical differ-
ences between UMDA and Tree-EDA for 24 of the 61 instances. For 19 of these
instances, UMDA was better than Tree-EDA. Significant statistical differences
between UMDA and Tree-EDAr were found for 52 of the 61 instances. For 49
of these instances, Tree-EDAr outperformed UMDA. The statistical tests con-
firmed what can be seen from the figures: Considering the average energy, Tree-
EDA was not able to improve results found by UMDA. For the best solutions,
Tree-EDA found better solutions than UMDA in only 32 of the 61 instances.
Nevertheless, the results of the statistical tests showed that the performance of
Tree-EDAr was consistently and clearly superior to UMDA both in average and
best solutions. This example shows that the use of problem information can be
critical for successful application of EDAs that consider interactions. The failure
of Tree-EDA to improve (on average) results achieved by UMDA may be due to
a small population size, insufficient to accurately compute the statistics needed
to detect the correct interactions.

6 Conclusions and Future Work

EDAs belong to a new class of stochastic optimization methods that are able
to capture, by the application of machine learning techniques, relevant features
about the problem domain. The results presented in this paper show how solu-
tions achieved in protein design problems can be improved by the use of proba-
bilistic models able to represent interactions between the variables. This general
procedure can be applied to other problems in protein design. Furthermore, as
it has been shown in this paper, the information stored in the probabilistic mod-
els learned during the search could be useful to reveal important characteristics
about the problem domain.

As a future research trend we envision the application of EDAs to more com-
plex models used for protein design. In particular, we consider EDAs could be
applied to the solution of the protein design problem using backbone dependent
rotamer libraries [4] similarly to the way they have been used for protein design
in [18].
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Abstract. In human mesenchymal stem cells the envelope surrounding
the nucleus, as visualized by the nuclear lamina, has a round and flat
shape. The lamina structure is considerably deformed after activation
of cell death (apoptosis). The spatial organization of the lamina is the
initial structural change found after activation of the apoptotic pathway,
therefore can be used as a marker to identify cells activated for apoptosis.
Here we investigated whether the spatial changes in lamina spatial or-
ganization can be recognized by machine learning algorithms to classify
normal and apoptotic cells. Classical machine learning algorithms were
applied to classification of 3D image sections of nuclear lamina proteins,
taken from normal and apoptotic cells. We found that the Evolutionary-
optimized Support Vector Machine (SVM) algorithm succeeded in the
classification of normal and apoptotic cells in a highly satisfying result.

This is the first time that cells are classified based on lamina spatial
organization using the machine learning approach. We suggest that this
approach can be used for diagnostic applications to classify normal and
apoptotic cells.

1 Introduction

The nuclear envelope separates nuclear and cytoplasmic compartments in meta-
zoan cells. The nuclear envelope is composed of outer and inner nuclear mem-
branes and the nuclear lamina, which is connected to the inner nuclear membrane.
The nuclear lamina is a filamentous protein network that gives the nucleus struc-
ture. Two major types of lamin proteins can be distinguished. B-type lamins are
ubiquitously expressed and essential for cell viability. The expression of A-type
lamins is developmentally regulated, and mutations in the human genes result in
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a variety of hereditary diseases with premature aging syndromes [1]. From the dy-
namic interactions between the lamina and chromatin domains, an active role of
the nuclear lamina in gene regulation and chromatin organization was suggested
[1][2][3]. Thus, the organization of the nuclear lamina can contribute to cellular
function.

In human mesenchemyal stem cells (hMSCs) the nuclear lamina shows a round
and flat shape after 3D image reconstruction. This distinct nuclear lamina shape
is dramatically changed after caspase-8 activation and cell death. Activation
of the caspase-8 pathway leads to an increase in intranuclear organization of
the nuclear lamina, followed by massive degradation of the lamina proteins [4].
Intranuclear structures of the nuclear lamina were observed in interphase cells
[5][6], and senescent cells [7], but the function of lamina reorganization is yet
unclear. An increase in lamina intranuclear structures is one of the first events
in nuclear remodeling after caspase-8 activation, and it precede the wholemarks
of apoptosis, such as chromatin fragmentation and nuclear breakdown [4]. As
the spatial organization of the nuclear lamina is initially changed when cells
undergo deactivation, such as senescence or apoptosis, it can serve as a marker
to distinguish between an active or non-active cells.

Here we considered classical machine-learning algorithms as a tool to classify
nuclear lamina organization of normal and caspase-8-activated cells. The empha-
sis is on exploring the feasibility of the task, rather than comparing state-of-the-
art classification algorithms. After the appropriate training, combined with an
evolutionary optimization, we show that the Support Vector Machines (SVM)
algorithm resulted in highly-satisfying classification.

Related Work. Machine learning algorithms have been widely used in biolog-
ical applications for the tasks of pattern-recognition, classification, prediction
and others. However, the application of machine learning techniques to the task
of classifying 3D images has been very limited, as reported so far. A recent study
[8], which originates in the field of brain imaging (fMRI), claimed to be the first
research to apply machine learning techniques to a clinical diagnosis. This study
reported successful classification of drug addicted human subjects and controls,
based on 3D brain images, using state-of-art classifiers in combination with novel
boosting algorithm. This study shows the use of image classification for clinical
diagnosis.

The remainder of this paper is organized as follows: in section 2 we introduce
the background for online learning and the algorithms in use. Section 3 provides
the reader with technical details of the images acquisition and the data-instances
construction. In section 4 the numerical results are presented and analyzed, and
section 5 provides discussion and concludes this study.

2 Algorithms

We discuss briefly the basic concepts of online learning and provide an overview
of the algorithms used. The reader should note that we limit ourselves, at this
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stage, only to the classical machine learning algorithms, aiming to obtain satisfy-
ing experimental results with respect to the given classification task. We prefer
the classical algorithms in this study, as they have a full theoretical analysis
behind them, lacking in most state-of-the-art algorithms, in particular neural
networks [9]. This choice would only be valid so long as the selected algorithms
deliver and accomplish the given task, and indeed, as will be shown here, they
did so and there was no need to use other algorithms.

2.1 Online Supervised Learning

Online supervised learning considers a situation in which instances are given
one at a time, in an incremental fashion, and where the learner’s task is to
learn a hypothesis which classifies the data correctly. Given instances {xi}l

i=1 in
R

n, and their labels set Y = {−1, +1}, the learning algorithm aims to update
its hypothesis h : R

n → {±1} in order to minimize the prediction error. The
prediction error is simply defined as the total number of mistakes made on the
training set. This is the so-called training phase. In the realizable case, i.e. where
there exists such a hypothesis, the learner will aim to reach a point where there
is an upper-bound on the number of mistakes. The training phase is followed by
the testing phase, where more data is given to the learned hypothesis (ideally
unseen data), and the accuracy rate is considered.

Statistical learning theory (also known as the Vapnik-Chervonenkis theory)
shows explicitly that the class of hypotheses, which is considered by the learning
algorithm, must be limited, and in particular adjusted to the size of the training
set [10].

2.2 The Perceptron

The Perceptron algorithm (Rosenblatt, 1957) is an online learning algorithm for
finding a consistent hypothesis within the class of hyperplanes [11]. It is a classi-
cal machine learning algorithm, which can also be considered as an engineering
simplification of a simple neural network [9].

Given a sequence
(
x1, y1

)
, ..., (xt, yt) , ... of instance-label pairs, where in-

stances and labels satisfy xt ∈ R
n, yt ∈ {−1, +1}, the Perceptron considers the

hypotheses class that corresponds to all possible hyperplane separators:

C =
{
h(x) = sign

(
wT · x + b

)
wt ∈ R

n, b ∈ R
}

(1)

The Perceptron algorithm maintains a single hyperplane, which it aims to learn,
such that the margin between the two sets is maximized. The hyperplane used
for prediction at round t is denoted by {wt, bt}, and it is modified only whenever
there is a prediction mistake. The learning rule, in case of a prediction mistake,
is then defined as:

wt+1 = wt + yt · xt (2)

bt+1 = bt − yt (3)
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i.e., the hyperplane is adjusted in the direction of the instance which it predicted
wrongly. It is guaranteed, by the so-called Perceptron convergence theorem, that
given linearly-separable data, the Perceptron algorithm will converge into a hy-
perplane separator within a finite number of steps.

A pseudo-code of the Perceptron is given as Algo. 1.

Initialize: Set w1 = 0, b1 = 0; w1 ∈ R
n, b1 ∈ R

for t = 1, 2, ..., l do
Get a new instance xt ∈ R

n.
Predict ŷt = sign

�
wt · xt + bt

�
.

Get a new label yt.
if yt �= ŷt then

wt+1 = wt + yt · xt

bt+1 = bt − yt

else
wt+1 = wt

bt+1 = bt

end
end
Output: h(x) = sign

�
wl+1 · x + bl+1�

Algorithm 1. Perceptron

The optimal hyperplane is defined as the one with the maximal margin of
separation between the two classes. It should be noted that the problem of
maximizing the margin is often considered, even at the cost of allowing some
miss-classifications of instances.

2.3 Support Vector Machines and Kernel Functions

Given data which is not linearly-separable, there exists no hyperplane separa-
tor hypothesis for the problem, and hence the Perceptron in its original form is
useless. However, by using kernel functions, the instance (input) space could be
mapped onto higher dimensional spaces thereby obtaining non-linear decision
boundaries in the original instance space.

The Support Vector Machines (SVM) algorithm (Boser, Guyon and Vapnik
1992; see, e.g., [12]) is a linear method in a high-dimensional feature space,
which is non-linearly interlinked to the instance space, but does not involve
any computations in that high-dimensional space. It is a rare combination of
two important elements - a statistical learning tool with full theoretical analysis
behind it, as well as a strong and robust practical tool for challenging real-
world applications. Consider the problem of learning the optimal hyperplane,
i.e. finding the maximal margin separating hyperplane with margin errors. This
can be done by considering a quadratic optimization problem, with a solution
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w∗ which can be expanded by means of the training instances that lie on the
margin:

w∗ =
∑

i

νixi (4)

Those particular instances carry the critical information concerning the classifi-
cation problem, and they are called the support vectors.

Explicitly, the SVM considers the following optimization problem:

min
w,b,ξ

1
2
wT · w + c

l∑

i=1

ξi (5)

subject to
yi

(
wT · xi − b

)
≤ 1 − ξi, ξi ≥ 0 (6)

where c > 0 is a penalty weighting factor, and the non-negative variables ξi allow
data points to be miss-classified.

By deriving the Lagrangian Dual of this problem, the obtained criteria func-
tion involves only the inner-products of the training instance vectors. This
is the key property which allows the mapping onto non-linear decision surfaces
(the dual problem is not necessarily easier than the primal, but it is completely
described by the inner-products of the instances).

The common principle of the kernel methods is to construct nonlinear vari-
ants of linear algorithms by substituting inner-products by non-linear kernel
functions. The function φ : R

n → F maps the instance vectors onto a higher
dimensional space F (called also feature space), and then the SVM aims to find
a hyperplane separator with the maximal margin in this space. As noted earlier,
this only requires the evaluation of dot-products. Introduce the kernel function:

k (xi, xj) ≡ φ(xi)T φ(xj) (7)

In particular, consider the following kernel functions:

– The polynomial kernel:

k (xi, xj) =
(
γ

(
xT

i · xj

)
+ r

)d
(8)

– Radial basis function (RBF) kernel:

k (xi, xj) = exp
{

− 1
2σ2

‖xi − xj‖2

}
(9)

– The sigmoid kernel:

k (xi, xj) = tanh
(
κ

(
xT

i · xj

)
+ Θ

)
(10)

Finally, the non-linear decision function will have the form:

f(x) = sign (φ (w∗) · φ (x) + b) = sign

(
∑

i

νi · k (x, xi) + b

)
(11)

where the variables νi are given as the solutions of the dual problem.
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3 Applying Online Learning Classification

Visualization of the nuclear lamina was carried out using lamin B-GFP or lamin
A-DsRed vectors, after transduction to hMSCs, as described in [4]. Z-stacks im-
ages were taken using confocal microscopy, 3D image reconstruction was carried
out with TeloView [13]. Each 3D image was sliced uniformly into 20 X 2D im-
ages, the orientation of the slicing axis (xz or yz) was chosen with respect to the
original orientation of the 3D image. For illustration see Fig. 1.

Fig. 1. (A) 3D reconstruction of a control cell. (B) 3D reconstruction of an apoptotic
cell. (C) XZ slicing of a control cell. (D) XZ slicing of an apoptotic cell.
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Data Acquisition. In normal cells, the 3D imaging revealed a round and flat
shape of the lamina. After caspase-8 activation the nuclear lamina shape was
significantly deformed. Serial slicing along the xy and xz orientations, taken from
an individual nucleus with the DIPimage tool [14], revealed little changes in the
spatial organization of the lamina in the normal cell. However, high variations
were observed in the serial slicing which was taken from an apoptotic cell along
the xz axis. As the nucleus has an ellipse-like shape, for image analysis the xz
and the yz axis are indifferent.

Instances Construction. Since the obtained slices are already given as gray-
scale matrices (pixel values are normalized within the interval [0, 1]), there was
no need in image analysis or feature extraction, but only in the rescaling (re-
ducing) the size of the image. Essentially, this means that the given image is
introduced directly to the learning algorithm, as a matrix, without any image
processing or component analysis. Concerning the final size of the image, there is
clearly a trade-off between high resolution and the learning efficiency. Following
a preliminary tuning process, the value of n = 4096 features per image (128X32
grayscale images) turned to be a good compromise.

4 Numerical Results

We have conducted a series of runs using the two algorithms. In this section we
describe in detail the experimental setup as well as the numerical results.

4.1 Experimental Setup

The Perceptron algorithm was implemented by us in Matlab 7.0, and the libsvm
package [15] was used as the SVM implementation (its Matlab interface).

We considered Ntrain = 2000 images in the training set, and Ntest = 1040
images in the testing set. The slices were shuffled, and the images were selected
randomly. The testing set contained only unseen data.

4.2 Applying the Perceptron

Applying the Perceptron was straightforward, with respect to parameter set-
tings, and did not require any preliminary tuning.

Preliminary Setup. We would like to report that at an early stage of this
study, we considered only untreated cells and cells 6 hours after treatment not
yet considering treated-cells of any stage. For the classification task of those
cells the Perceptron algorithm was applied, and obtained satisfying results -
test accuracy of 82.2%, far better than we had expected. However, when the
additional data was introduced to the algorithm, i.e. the treated-cells of other
stages, the classification performance dramatically dropped.
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It is possible that the images of early-stage treatment introduced some non-
linearity to the classification problem, and hence the Perceptron failed to deliver.
For illustration, consider Fig. 2, Fig. 3 and Fig. 4, as instances at different stages
of treatment.

Fig. 2. A typical slice of a nucleus, taken from a normal untreated cell

Fig. 3. A typical slice of a nucleus, taken from a cell treated for apoptosis: 4 hours
after treatment

Fig. 4. A typical slice of a nucleus, taken from a cell treated for apoptosis: 6 hours
after treatment

Extended Data. The Perceptron algorithm obtained, after training, a test
accuracy of 70.38% (732/1040 images were classified correctly). This result led
us to the conclusion that the data was not linearly-separable, and a stronger
approach was much needed.

4.3 Applying Support Vector Machines

The application of support vector machines to the classification problem, with its
default settings, yielded poor results (test accuracy of 55% on average, which is
only slightly better than using the random hypothesis). Thus, the task of tuning
the kernel parameters was essential - the penalty weight c (Eq. 5), the profile of
the kernel (Eq. 8, 9, 10) and its various appropriate parameters ({γ, r, d}, {σ}
and {κ, Θ}, respectively).
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Evolutionary Optimization. For this task we have chosen Evolution Strate-
gies (ES) [16] as our optimization framework. In particular, we considered the
Covariance Matrix Adaptation (CMA) Evolution Strategy [17] as the core mech-
anism. A short description follows. The CMA is a variant of ES that has been
successful for treating correlations among object variables. This method tack-
les the critical element of Evolution Strategies, the adaptation of the mutation
parameters. The fundamental property of this method is the exploitation of
information obtained from previous successful mutation operations. Given an
initial search point x0, λ offspring are sampled from it by applying the mutation
operator. The best search point out of those λ offspring is chosen to become the
parent of the next generation. The action of the mutation operator for generating
the λ samples of search points in generation g + 1 is defined as follows:

xg+1 ∼ N
(
x

(g)
k , σ(g)2C(g)

)
, k = 1, ..., λ (12)

where N (m,C) denotes a normally distributed random vector with mean m
and covariance matrix C. The matrix C, the crucial element of this process,
is initialized as the unity matrix and is learned during the course of evolution,
based on cumulative information of successful mutations (the so-called evolution
path). The global step size, σ(g), is based on information from the principal
component analysis of C(g) (the so-called “conjugate” evolution path). We omit
most of the details and refer the reader to Hansen and Ostermeier [17].

Setup and Numerical Results. As stated earlier, the optimization routine is
performed on each set of parameters which uniquely defines each kernel, as well
as on the penalty weight c. Hence, the dimension of the search space is {4, 2, 3}
for the Polynomial, RBF and Sigmoid cases, respectively.

The cross-validation accuracy rate was chosen as the objective function to
be maximized. We applied a 5-fold cross-validation routine. Each objective
function evaluation has the duration of approximately 11 minutes on
a Pentium-4 2.6GHz, and therefore we chose to limit each run to 1000 func-
tion evaluations. Given this long evaluation time, we had planned to perform
only 5 runs per kernel type, hoping to obtain satisfying results; every run has
converged.

Table 1 concentrates the numerical results of the optimization runs - the maxi-
mal cross-validation accuracy values obtained by the CMA-ES optimization
routine for the different kernel types, as well as the testing-phase classifica-
tion results and their best accuracy values respectively of the different kernels.
Due to the limited number of runs we do not provide further statistical analysis
of the results.

All together, this time-consuming parameters’ tuning optimization process
obtained a solution with test accuracy of 97.02% (1009/1040 images were
classified correctly) for the RBF kernel. We consider this numerical result as
a highly satisfying one, and as remarkable assessment to the hypothesis that
the given images could be classified correctly by a machine. Thus, we have not
performed any further optimization.
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Table 1. Best test-accuracy values obtained for the different kernels over five runs

Kernel Type Cross-Validation Correct Classification Test-Accuracy Value

Polynomial 86.63% 910/1040 87.50%

RBF 98.90% 1009/1040 97.02%

Sigmoid 52.55% 569/1040 54.71%

Interestingly, the optimization routine found 2 different solutions with high
accuracy rates, which are completely different with respect to the penalty term.
The observed 2 best solutions, which are associated with the RBF kernel, are
given at table 2.

Table 2. Best 2 solutions for the RBF kernel; Note the difference in the penalty terms

Solutions Optimized σ Optimized c Test-Accuracy Value

Best Solution 0.0420 1452.3 97.02%

2nd-best Solution 0.0358 3.3 96.34%

Given this result, we have applied a grid-search of the penalty-term c, with
a fixed σ = 0.4. This search obtained a flat curve, indicating that given such σ,
the penalty term can be set arbitrarily in a range of 3 orders of magnitude - in
order to yield high 5-fold cross-validation.

5 Discussion and Conclusions

The human hMSCs are pluripotent cells that have the potential to differentiate
into various cell types. Therefore, they are attractive candidates for clinical use
to treat systemic diseases as well as local tissue and organ defects [18]. Fur-
thermore, they can be used as a vehicle for genes in gene therapy strategies. In
clinical practice, however, the rate of success is not satisfying, which is in part
due to the status of the transplanted cells. Senescent cells or cells that initiated
apoptosis will not succeed after transplantation. Therefore, a quality control of
the cells before clinical use may enhance the success rate of treatments with
hMSCs. We have previously shown that changes in the nuclear lamina organi-
zation are the earliest structural change after activation of caspase-8 in hMSCs
[4]. Therefore we aimed to develop a classification system, which is based on the
nuclear lamina spatial organization, in order to differentiate between normal and
early apoptotic cells. We found that applying a classical machine learning tech-
nique, the Support Vector Machines (SVM) method, was sufficient to distinguish
between normal and early apoptotic cells. The performance of the Perceptron on
the given learning task was limited due to the fact that the data is not linearly
separable. The evolutionary-optimized SVM, however, outperformed it and suc-
ceeded in classification with highly satisfying results of 97% accuracy. Our choice
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to use only classical classifiers has been shown to be sufficient for our purposes,
as it successfully tackled the given task. Moreover, it provided us with valuable
insight concerning the nature of the data, in particular its being not linearly
separable.

Our results here further support previous study [8], showing that machine
learning techniques can be applied to the task of classifying 3D images. We show
that machine learning algorithms can also be used to distinguish between different
morphologic features of the nuclear lamina, thus classification of cell status can be
determined by the learning machine without any human interference or bias. This
allows a rapid quality control of hMSC cultures before clinical use.

Outlook. We have several future directions under consideration:

– Testing the classification of images in other cellular processes, where the
changes in nuclear lamina spatial organization are less dramatic.

– Applying unsupervised learning to this classification problem, aiming to ob-
tain new insights into the biological process.

– Due to the highly dynamic nature of the nuclear lamina, it would be mostly
challenging to apply the machine learning to classification of images which
are taken at different points of time.
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jochen.supper@uni-tuebingen.de

Abstract. The ability to measure the transcriptional response after
a stimulus has drawn much attention to the underlying gene regula-
tory networks. Here, we evaluate the application of methods to recon-
struct gene regulatory networks by applying them to the SOS response
of E. coli, the budding yeast cell cycle and in silico models. For each net-
work we define an a priori validation network, where each interaction is
justified by at least one publication. In addition to the existing methods,
we propose a SVD based method (NSS). Overall, most reconstruction
methods perform well on in silico data sets, both in terms of topological
reconstruction and predictability. For biological data sets the application
of reconstruction methods is suitable to predict the expression of genes,
whereas the topological reconstruction is only satisfactory with steady-
state measurements. Surprisingly, the performance measured on in silico
data does not correspond with the performance measured on biological
data.

1 Introduction

Measuring the transcriptional response of cellular processes under various condi-
tions provides valuable insight into the global behavior. Such measurements can
be analyzed by clustering, thereby providing undirected gene relations. In or-
der to model gene regulatory networks (GRN), directed relations between genes
have to be considered. Different approaches, describing how the expression of the
genes is controlled, have been proposed. GRNs can be represented by intercon-
nections between genes, each indicating that one gene influences the expression
of another gene. The functionality associated with the gene-gene interconnec-
tions ranges from simple Boolean interactions to complex differential equations
[1–3].

The properties of GRNs have been analyzed on a global scale [4] and recently
also on the individual gene scale [5]. The global organization of GRNs seems to
follow a power-law distribution, where most genes are controlled by a small num-
ber of genes and a few genes are highly connected. At this point it is important
to stress that the global structure is a static property of the GRN, and cellu-
lar perturbations only activate a subset of this network. Therefore, expression
profiles only cover a subset of all possible cellular conditions and thus provide
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only partial information about the underlying regulatory program. On a single
gene scale quantitative characterization of the promoter activity has been in-
vestigated [6]. The common picture from these investigations is, that genes are
activated at a certain threshold, then the dose-response curve progresses linearly
until it saturates at its maximal fold-change. These investigations allow general
questions regarding the proper conceptual and mathematical representation as
well as the sufficient amount of detail required for modeling.

The major problem for the reconstruction of GRNs is that it is very hard to
validate the hypothesized networks. This makes it difficult to compare methods
and yet to judge if certain approaches are helpful at all. In previous publications,
GRN models have been validated by co-citation [7], cross-validation [8] or on
artificial data [9]. Despite these efforts, no topological validation on biological
models, in which each interconnection is a priori justified by published work, has
been assessed for different reconstruction methods. In this work, we present two
biological networks that have been investigated thoroughly, with plenty of known
interactions, as well as an in silico GRN model. In addition to the topological
validation, we predict the gene expression by 5-fold cross-validation.

Several methods have been developed to reverse engineer genetic networks.
Since the proper modeling terms of GRNs are not yet known, we avoid specific
assumptions by using standard methods and reconstruction algorithms. There-
fore, we apply linear regression, greedy search, exhaustive search and methods
developed by Weaver et al.[10] and Someren et al.[11]. The description of these
linear models is straightforward, whereas non-linear interactions can be mod-
eled by applying a preprocessing step. Thereby, the gene-gene dependence can
be altered, such that the interaction terms are non-linear and multiplicative.
To investigate the influence of the preprocessing, we incorporate and evaluate
different types of preprocessing.

In addition to comparing different reconstruction algorithms, we propose our
own reconstruction method for GRNs, the Null Space Solver (NSS). The core
algorithm was previously described by Supper et al.[9]. To reconstruct the GRN,
we employ a heuristic based on Singular Value Decomposition (SVD). Different
groups have previously used SVD to reconstruct GRN [3]. Our approach searches
the solution space in an efficient way by exploiting the properties of the SVD.
The search steps are probabilistic and provide an ensemble of networks, which
we rank according to different criteria. Our first criteria is to choose the solution
with the minimal number of interactions. If several such solutions exist, we rank
these according to the 1-Norm.

Besides choosing the proper reconstruction method it is critical to obtain
applicable data sets. Transcriptional response data is characterized by a large
number of measured genes along with a small sampling rate. Consequently, the
number of features is high compared to the number of sampling points, rendering
the reconstruction of a GRN ambiguous. By restricting ourselves to sub-networks
we relax this problem so that the number of measurements is in the range of
the number of genes. We also perform a reconstruction on an additional data set
containing 800 genes for which this relaxation is not possible.
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2 Approach

2.1 Data Sets

We collect data sets from three different sources. The two biological data sets
are derived from the cell cycle progression of the budding yeast cell cycle (Sac-
charomyces cerevisae) and the SOS response of E. coli. The genes contained in
these data sets display only a small subset of the global GRN, however, it is
known that these genes play an important role in the respective processes.

The budding yeast cell cycle has been thoroughly investigated over many
years. Cho et al.[12] and Spellman et al.[13] contributed to these investigations
by publicly providing four transcriptional data sets, measuring the progression
of the cell cycle. The sample numbers of these data sets range from 14 to 24
and the samples are taken at equidistant time steps for each series. In our study,
we concentrate on the α-factor data set, containing 18 samples and 7 minute
time steps. The measurements have been taken on microarrays [14], from which
we select two subsets containing 20 and 800 genes, respectively. The gene group
containing 800 genes corresponds to the subset chosen by Spellman, meeting his
criteria for cell cycle regulation [13]. The second subset is chosen according to
the network published by Chen et al.[15].

The SOS response is well understood and regulates cell survival and repair
after DNA damage. For the measurement of the SOS response, Collins et al.
used the wild-type E. coli strain MG1655. Their data set can be obtained from
their publication [16]. Unlike Spellman, Collins et al. measured the steady-state
concentration of the transcriptional response to a constant perturbation. This
perturbation was done for each of the nine genes in the network and hence nine
measurements were carried out.

The artificial data set is derived from an in silico model. The topology of this
model is initialized randomly, while the in-degree of every gene follows a power
law distribution with an exponent ranging from 1.1 to 1.8 [4]. The networks
are simulated by randomly perturbing the gene expression and subsequently
measuring the response of the expression. Three networks with 10, 100 and 1000
genes are generated, and 5, 50 and 500 measurements are taken respectively. To
add noise a Gaussian distribution, with a standard deviation of 5 %, is applied
to the data sets.

Topological Validation Networks. To evaluate the results of different recon-
struction methods, we define a topological network of gene regulation a priori.
A model for the cell cycle was previously provided by Chen et al.[15] as a set
of differential equations, defining the topological structure of the network with
72 edges. In his publication, this model is accompanied by justifying references
to literature. From this system of differential equations we extract the topol-
ogy by assuming an interaction, whenever the differential equation contains one.
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A validation network for the SOS response is taken from the publication of
Gardner et al.[16]. The validation networks can be downloaded as SBML models
from our website1.

Preprocessing. The structure of the network can be largely affected by the
preprocessing step. The cell cycle data set is normalized by the average log ratio
(log2(ratio)), which implicitly describes a non-linear relationship between the
genes. To assess if such a preprocessing is suitable, we test the reconstruction
without preprocessing and with the application of a sigmoidal function. The SOS
response data set, on the other hand, is given in relative expression changes,
preserving the linear relationship between the genes.

2.2 Reconstruction Methods

We evaluate six GRN reconstruction methods for their applicability to transcrip-
tional data. We start from a gene expression matrix X ∈ R

genes×samples , where
each row represents a gene and each column represents a sample taken at a spe-
cific time step. This means, that an element Xij of X indicates the expression
level of gene i in sample j. This relationship allows to calculate the expression
of a gene by summing over all influences, as shown in Eq. 1. For the steady-state
data set of the SOS response Eq. 1 has to be interpreted different, while preserv-
ing the general structure of the equation. This can be done by assuming that the
perturbation is at time point t and that the system returns to steady-state at
time point t + Δt. Thereby, the actual value of the time step Δt can be ignored.
By applying the log2(ratio) to the cell cycle data set this relationship changes
to a non-linear multiplicative relationship between the expression of the genes.

gi(t + Δt) =
N∑

j=1

wijxj(t) (1)

In this work, we use basic models in combination with standard reconstruction
methods. This draws from the fact, that little is known about the proper struc-
ture of GRNs and, therefore, the models should be kept general until specific
modeling information emerges. Four of our reconstruction methods are basic ap-
plications of standard methods, namely exhaustive search, greedy search, linear
regression and a random algorithm. The exhaustive search strategy enumerates
every possible interconnection and ranks it among all the others, finally return-
ing the best set of interactions as the GRN. The greedy search strategy uses local
information to change the current topology, i.e. tries to find the global optimum
without enumerating all solutions. Linear regression searches the parameters that
cause a linear function to optimally fit the observed data. The random algorithm
returns a randomly created network topology; this method is used to compare
the other methods to a random guesser. In addition to the standard methods, we
also evaluate the performance of methods specifically developed to reconstruct

1 http://www-ra.informatik.uni-tuebingen.de/mitarb/supper/grn/
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GRNs, Ref. [9] ,[11] and [10]. The method of Someren et al.[11] uses Gaussian
elimination followed by free variable manipulation. Weaver et al.[10] reconstruct
the GRN by applying SVD and afterwards removing the interactions with the
lowest weight. Supper et al.[9] use SVD with a probabilistic search strategy
(NSS) for the null space. Due to the runtime of the algorithms, not all methods
can be evaluated on the large data sets.

Validation Methods. To validate the reconstruction methods two different
types of validation techniques are applied. The first technique evaluates the
topological reconstruction of the GRNs, i.e. how well the reconstructed topology
resembles the validation topology. This evaluation is only applied to networks for
which such a topology is available. To quantify the quality of the reconstruction,
we count the number of true positives TP, false positives FP, false negatives
FN and true negatives TN in the reconstructed network and then calculate
the Matthews correlation coefficient (MCC, Eq. 2). The MCC combines both
sensitivity and specificity into one measure, thereby correcting for unbalanced
data sets. The MCC is a measure of correlation between the validation data and
the model, where 1 indicates perfect positive correlation and -1 indicates perfect
negative correlation. We also calculate the accuracy (ACC) of the reconstructed
networks (ACC = (TP + TN)/(TP + FP + FN + TN)).

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(2)

Apart from the qualitative validation of the topology, we are also interested in
the predictability of our models. Since the inferred models are quantitative, they
can be simulated to predict the expression of genes. To evaluate the predictive
power, we use 5-fold cross-validation: We randomly split the data into 5 parts
and train our model on 4 of these parts, while leaving the remaining part for
testing. Then, the whole procedure is iterated such that each part is left out
exactly once. Several measures can be used to evaluate the prediction of gene
expression. Here, we distinguish between the two states of increased expression
and decreased expression. More precisely, we define the state, si, of a gene i at
time point t as in Equation 3. This definition cannot be applied to the steady-
state SOS response data set, here we similarly define the state, sip, of a gene
i after the perturbation p. The state of a gene is defined as +1 if the gene is
upregulated under the respective perturbation, otherwise it is defined as -1.

si(t) :=
{

+1 if gi(t) ≥ gi(t − Δt)
−1 otherwise (3)

Apart from the validation on isolated edges we are interested in indirect con-
nections which are modeled as direct connections. Such a simplification occurs
if a transcriptional signal is transduced over one intermediate gene. To calculate
the occurrence of direct connections, we implement a graph search algorithm to
determine if a FP edge in the reconstructed network can be traversed in the
validation network by taking a route over one intermediate gene.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Reconstructing Linear Gene Regulatory Networks 275

We are fully aware of the fact that the validation network itself will contain
incorrect edges and also miss existing edges. Furthermore, we are also aware of
the fact that validation can strongly depend on the specific parameter settings
of the individual methods. Despite these limitations, we nevertheless think that
useful insight can be drawn from this study.

3 Results

3.1 Reconstruction
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Fig. 1. Topology of the reconstructed E. coli SOS response networks networks. Arrows
show directed, lines undirected edges and a grey node shows self-regulation.
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Table 1. Evaluation of the reconstruction methods. The topology shows the ability
of the models to reproduce the validation network. The prediction score is calculated
by a 5-fold cross-validation. The results are given as Matthews correlation coefficients
(MCC) and accuracy (ACC). I. Evaluation of the the SOS response network. II. Eval-
uation of the cell cycle network. III. Evaluation of the the in silico data sets. The
topology column shows how well the the validation network is reproduced. The predic-
tion score column shows the ability of the models to predict the expression of genes.

Reconstruction of the gene regulatory networks

I. SOS response network II. Yeast cell cycle network

Topology Prediction Topology Prediction Pred. 800
MCC ACC MCC ACC MCC ACC MCC ACC MCC

Exhaustive search 0.14 0.48 0.56 0.77 0.05 0.82 0.35 0.68 -
Linear regression 0.55 0.79 0.89 0.94 0.06 0.48 0.16 0.62 0.73
Greedy search 0.15 0.48 0.87 0.94 0.02 0.82 0.26 0.63 0.70
NSS 0.40 0.71 0.63 0.77 0.05 0.60 0.45 0.72 0.72
Weaver et al. 0.14 0.59 0.11 0.56 -0.06 0.30 -0.08 0.47 0.50
Someren et al. 0.23 0.63 0.38 0.78 0.03 0.51 0.10 0.60 -

III. Reconstruction of the in silico networks

Topology Prediction
MCC 10 100 1000 10 100 1000

Exhaustive search 0.82 - - 0.84 - -
Linear regression 0.29 0.25 0.03 0.53 0.57 0.35
Greedy search 0.82 0.91 0.92 0.75 0.94 0.94
NSS 0.75 0.93 0.87 0.81 0.95 0.37
Weaver et al. 0.40 0.18 0.91 0.51 0.43 0.42
Someren et al. 0.93 - - 0.92 - -

E. coli SOS Response Network. The results of the reconstruction for the
SOS response network are shown in Table 1. I. The topology of the network is
resembled with an accuracy between 70% and 80% by linear regression and the
NSS, the remaining methods all outperform the random guesser2, but not very
significantly. The prediction of the gene expression outperforms the topologi-
cal reconstruction. This is especially apparent for the exhaustive search, where
the topological reconstruction is not satisfactory but the predictability is. The
reconstructed topologies of the different methods are shown in Figure 2.

Budding Yeast Cell Cycle Network. The topological reconstruction of the
20 gene cell cycle network has a low performance (Table 1 II). This is true for
every method applied to the data set, with almost no correlation between the
reconstructed and the validation network. This also holds for the predictability
2 The random guesser has an MCC value of zero, for topology and predictability.
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Fig. 2. Analysis of the reconstructed edges for different data sets. The x-label “indirect
connections” shows the number of reconstructed edges with an indirect counterpart in
the validation network.

of some reconstruction methods. However, the accuracy of the predictability does
reach an accuracy of 72% for the NSS. This is also the case for the 800 gene
network, where the linear regression even reaches an accuracy of 73%.

In Silico Networks. As expected the reconstruction of in silico models outper-
forms the reconstruction of biological networks (Table 1). For the small network
with 10 genes, the MCC value of the reconstruction is significantly better than
the random reconstruction for all methods. The performance improves for larger
data sets with more measurements, whereas the method of Someren et al. and
Exhausitve search are not listed because the runtime on 100 and 1000 genes is
too long. The performance on a network with 1000 genes is in the range of the
results obtained on 100 genes.

Indirect Connections. Reconstructed networks frequently contain indirect
connections which are reconstructed as direct connections. Figure 2 shows the
occurrence of direct connections (TP), indirect connections with one intermedi-
ate gene and edges that have no direct or indirect counterpart in the validation
network. The reconstructed SOS response networks show a high number of in-
direct connections, indicating the reconstruction of delayed effects. The random
network has far more FP and a low number of indirect connections. The cell
cycle network does not show any significant deviation from a random recon-
struction, this applies for direct as well as for indirect connections. The in silico
networks show a different distribution than the biological networks, either the
reconstructed connections are TP or they have no connection at all. Thus, the
reconstruction of indirect effects does not occur in these networks.

Preprocessing. The application of linear and sigmoidal preprocessing shows
no improvement.

4 Discussion and Conclusion

We evaluated six different reconstruction algorithms on transcriptional data sets.
Depending on the aim of the reconstruction (topology or prediction) the type of
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data (steady-state or time-series) and the reconstruction method, the obtained
results differ significantly. Surprisingly, this is not only the case for different types
of data, but also for different reconstruction methods, although the underlying
model (Equation 1) is identical. However, it has to be remarked critically that
these results depend on the specific parameter and data format settings for the
individual algorithms.

The most significant difference is observed between topological reconstruction
and predictability of gene expression. The predictability is acceptable for every
data set,e.g. for the SOS response data set a prediction accuracy of 94% is
obtained. For the cell cycle data set, the prediction accuracy is around 70%.
For the in silico data sets the discrepancy between topology reconstruction and
prediction of gene expression is small, and both measures yield good results.
The reason for the successful topological reconstruction might be owed to the
benefit of knowing the character of the interaction a priori. However, contrary
to in silico data sets these interactions are not known for biological data sets.

Another apparent difference is observed between the use of time-series data
and steady-state data. Steady-state data sets seem to be suitable for network
identification. Time-series data, on the other hand, poses many problems ham-
pering reconstruction, e.g. the time dimension has to be accounted for. Another
difficulty concerning time-series data is its increased sensitivity to noise, which
is caused by the absence of noise compensation through averaging effects.

The performance of the reconstruction methods is quite diverse among the
different data sets. We initially assumed, that if a method performs well on in
silico data sets, it also performs well on biological data sets, this was not the
case in our study. It is not clear yet, if this is generally the case, but it poses the
question whether validating methods on in silico data sets is adequate.

The reconstruction of GRNs can yield satisfactory results as well as poor
results in different applications. For instance, the application of GRN models for
the prediction of gene expression is satisfactory in most cases. The topological
reconstruction on the other hand is far more critical. The cell cycle data set, for
instance, does not seem to be suitable for uncovering the topological structure of
the network. However, the prediction of gene expression does yield good results.

Overall, the greedy search and NSS method based on steady-state data are
suitable for the topological reconstruction. In case of time-series data, we ques-
tion the applicability of reconstruction methods based solely on transcriptional
data; here the incorporation of additional data might improve the reconstruc-
tion. For the prediction of gene expression, the choice of the data set seems to be
uncritical and basic methods such as linear regression or greedy search provide
reasonable results.
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Abstract. “Quorum sensing” has been described as “the most conse-
quential molecular microbiology story of the last decade” [1][2]. The pur-
pose of this paper is to study the mechanism of quorum sensing, in order
to obtain a deeper understanding of how and when this mechanism works.
Our study focuses on the use of an Individual-based Modeling (IbM)
method to simulate this phenomenon of “cell-to-cell communication” in-
corporated in bacterial foraging behavior, in both intracellular and pop-
ulation scales. The simulation results show that this IbM approach can
reflect the bacterial behaviors and population evolution in time-varying
environments, and provide plausible answers to the emerging question
regarding to the significance of this phenomenon of bacterial foraging
behaviors.

1 Introduction

Systems biology has been proposed in the past a few years to overcome the ex-
isting barriers in biology, as a result, computerized analysis of biological models
is investigated. Individual-based Modeling (IbM) is one of the emerging ap-
proaches [3] to this problem. The basic idea of IbM is to simulate the behavior
or dynamics of an individual which interacts with the others synchronously or
asynchronously in a same or different living patterns. IbM is commonly based on
cellular automation models, explaining qualitatively colonial pattern formations
for different nutritional regimes [4]. An essential capability of an IbM enables the
description of all the states, inputs and outputs of an individual and their rela-
tionship with that of the other individuals which are living in a same population.
In contrast to the population-based model (PbM), the IbM should possess a more
flexible and robust capability for simulating a complex system where there are a
large number of individuals which have their own behaviors dynamics influenced
by the other individuals and the environment.

It is well recognized that bacterial diseases such as cholera, meningitis, E.coli
infection and many others are among the deadliest in the world. However, it has
� Correspondence concerning this paper should be made to Professor Q.H. Wu.
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been reported recently that bacteria can cause an illness only when there are a
sufficient number of them. A cell-to-cell signal is involved in the development of
bacterial communities, such as biofilms [5]. This communication between bacte-
ria is often referred as “quorum sensing”, which is widespread in nature. It also
controls the processes of bacterial behavior, especially those that are usually
unproductive when undertaken by an individual bacterium but become effective
in a group. For instance, bioluminescence, secretion of virulence factors, sporu-
lation and conjugation are believed to have relationship with quorum sensing.
In this sense, bacteria are able to function as multi-cellular organisms with this
underlying mechanism.

In the past a few years, quorum sensing has been the research topic addressing
a broad audience. Ward et al. [6] introduced a general mathematical model of
quorum sensing in bacteria. Dockery et al. [7] presented a mathematical model of
quorum sensing in P.aeruginosa, to show how quorum sensing works using a bio-
chemical switch. A number of biologically realistic mechanisms, such as “quorum
sensing”, have been considered in [8], to study the pattern forming properties of
bacteria. A stochastic model to connect intracellular and population scales of the
quorum sensing phenomenon has been proposed in [9] to demonstrate that the
transition to quorum sensing in an Agrobacterium population in liquid medium
requires a much higher threshold cell density than in biofilm. Muller et al. [10]
investigated and analyzed a spatially structured model for a cell population, in-
cluding a detailed discussion of the regulatory network and its bistable behavior.
The modeling approaches done by You [11] and Garcia-Ojalvo [12] also revealed
a number of important properties of quorum sensing.

However, all the work discussed above are based on differential equations,
which share the same drawbacks, e.g., the parameters of these models have to
be determined from the experimental data. Moreover, they are not able to be
generalized for analysis of various events of the biological system from which
the data were collected. With the aim of systematic approach, it is rare that
these models could be able to describe the whole evolution process of biological
colonies.

To demonstrate the effectiveness of IbM based models in solving the prob-
lems in Systems Biology, we have previously presented a Varying Environment
Bacterial Modeling (VEBAM), which is an individual based model of bacterial
foraging incorporating mechanisms of chemotactic behaviors [13]. In this paper,
we consider a novel VEBAM based approach by which quorum sensing can also
utilize biologically realistic mechanisms, including the employment of cell density
sensing mechanisms.

This paper is organized as follows: Section 2 introduces the framework and ba-
sic components of the previously presented model, VEBAM. Section 3 describes
the phenomenon and its underlying mechanism of quorum sensing in detail , then
the modeling of quorum sensing based on VEBAM is presented. The bacterial
behaviors with and without quorum sensing mechanism are simulated, and the
numerical difference between them with a wide variety of intrinsic and extrinsic
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properties of bacterial foraging are illustrated in Section 4, followed by the con-
clusion in Section 5.

2 The VEBAM

The principle of VEBAM is described from a macroscopic viewpoint. Such a
model represents the foraging patterns of E.coli in and between two fundamental
elements: the environment and cells. The architecture of this framework is shown
in Fig. 1.
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Fig. 1. VEBAM architecture

2.1 The Environment

An environment includes the properties of an artificial surface used for food
searching, such as the characteristic of the boundary and the map of food dis-
tribution. The food distribution map is initialized by the definition of a specific
function.

The environment is defined as

Env〈σ, β〉 (1)

where σ indicates the nutrient distribution and β represents the characteristic
of boundary, indicating whether it is reflective or periodic.

The environment is segmented equally into small niches as a discrete grid,
covering a 2-dimensional grid of M × N units. Thus the Env contains M × N
equally divided units, which can be represented as:

Env = {Envt
ij |i = 1, 2, · · · , M ; j = 1, 2, · · · , N ; t = 1, 2, · · · , ∞} (2)

where Envt
ij denotes the nutrient or toxin level in the niche of (i, j) and a positive

value of Envt
ij indicates nutrient while negative ones represent toxin; i and j are

indices of each dimensions along the coordinates; and t denotes the time instant
of the step of the foraging process.
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2.2 The Cells

Each cell is assumed to have a receptor which detects the value of its surrounding
environment. A cell also has a decision making system determining its directions
of movements, energy status and activation of division system according to the
information obtained by the receptors. These activities last during the cells’
lifetime, which in turn, enable them interact with the environment and then
modify the food map.

Following the definition of the environment, the cells are defined to consist of
a set of bacteria, which is represented as:

B = {Bt
l |l = 1, 2, · · · , P ; t = 1, 2, · · · , T } (3)

where
Bt

l = 〈pt
l , ε

t
l , ϕ

t
l〉 (4)

denotes an individual bacterium or cell; P the maximum population in the for-
aging process and T the final time of this process; Bt

l has its own position pt
l ,

pt
l = {i, j|l, t}, energy εt

l , status ϕt
l , ϕt

l = {ΦI, ΦA, ΦD}, where ΦI, ΦA, ΦD stand
for the status of Inactive, Active and Divided, respectively.

3 Modeling of Cell-Cell Communication

3.1 Cell-Cell Communication by Quorum Sensing

Living organisms are always subject to time-varying conditions in the form of
environmental changes. That is why they develop the essential ability to sense
signal in the environment and adapt their behaviors accordingly. To understand
the intracellular molecular machinery that is responsible for the complex col-
lective behavior of multicellular populations is an exigent problem of modern
biology.

As a new branch of microbiology, quorum sensing, was discovered by Miller
and Bassler [14]. It allows bacteria to activate genetic programs cooperatively,
provides an instructive and tractable example illuminating the causal relation-
ships between the molecular organization of gene networks and the complex
phenotypes they control. Generally, it is a process that allows bacteria to search
for similar cells in their close surroundings using secreted chemical signaling
molecules called autoinducers. This is also called “cell-cell communication”.

In the quorum sensing process, the population density of bacteria is assessed
by detecting the concentration of a particular autoinducer related to the den-
sity of a cluster of cells. At a certain stage of the bacterial foraging process, the
density would increase. A colony of bacteria would respond to the density by ac-
tivating specific gene expression programs. This phenomenon, which conducts in
an intercellular communication manner, is exhibited commonly in gram-negative
bacteria, such as E. coli.
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The cells, which have their specific gene expression programs activated, could
produce autoinducers, i.e., signalling molecules, which initiate the quorum sens-
ing [11]. The “on-off” gene expression switch controls this conjugation phenom-
enon in response to the increase of autoinducer concentration. Thus, once a
certain level of a cluster density is reached, a quorum sensing network of the
population is formed and turns to the “on” state. It also amplifies the autoin-
ducer signal of the “quorum” cells. This signal then turns on the expression of the
phenotype-specific genes of other cells and boots the production of autoinducers
in the entire population. Once it turns to the “on” state, it keeps in this state
until the density of the cluster falls below a certain level. The quorum sensing
network remains in the “off” state, until a certain concentration of autoinducers
is reached.

3.2 Modeling of Quorum Sensing

In the VEBAM, quorum sensing is calculated based on the definition and com-
putation rules of clusters. A set of clusters is an aggregation of population, which
is defined as follows:

C = {Ck|k ≤ P} (5)

where
Ck = 〈Dk, Gk, Fk〉 (6)

denotes the kth cluster in the population, Dk the population density, Gk the
position of gravity center, and Fk the diffusion exponent of the autoinducer in
cluster Ck.

At each chemotactic step, bacteria move from one position to another, and
they tend to move towards the nutrient-rich area. In general, the variation of
bacterial population density is affected by four factors: the availability of nutri-
ents, the presence of competitors, the host response and also the quorum sensing
network. However, due to lack of the existing knowledge of the competitors and
host response behaviors, only the nutrients and the quorum sensing network are
considered at this stage. In VEBAM, each cluster, Ck, in the population is clas-
sified based on the bacterial population density. The position of gravity center,
Gk, are also calculated for each cluster Ck.

At time t, the amount of autoinducers, extracted by cluster Ck with the
mechanism of quorum sensing, is calculated as:

At
k,i,j = −λ exp(−(t − t0)Fk‖Gk − pt

l‖2) (7)

where t0 is the time at which the quorum sensing is turned to the “on” state,
λ denotes the amplitude of the peak of autoinducer congregation and is to be
tuned as appropriate.

The autoinducer could be added to the environment as an attractive factor.
Then the environment is modified as

Envt+1
ij = Envt

ij + At
k,i,j (8)
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The energy of each bacterium producing autoinducers also needs recalculation.
Let Cm ⊂ C, where Cm is the cluster which produces autoinducers, the energy
of the ith individual in Cm is modified as:

εt+1
i = (1 − α)εt

i (9)

where i ∈ [1, 2, · · · , nm], nm is the total number of cluster m and α is the
coefficient used to control the rate of the energy-autoinducer transformation.

4 Simulation Studies

4.1 Environmental Setting

The VEBAM is set in a multi-modal environment. The nutrient distribution of
the toroidal grid environment at t = 0 is set by the function f(x, y) as indicated
in [13] and this environment is divided into 300 × 300 grids.

During the whole process of computation, the nutrient in the environment is
constantly consumed by bacteria at all grid units where they occupy in each step
until the nutrient is lower than a minimal level of consumption.

4.2 Population Evolution with Quorum Sensing

As discussed in section 3, based on the coordinate of the positions, using the
method of “density-based spatial clustering” [15], each cluster, Ck, in the popu-
lation can be classified. If we define an individual as a “point” in the environment,
then these points can also be classified as follows.

Above all, Eps, the neighborhood radius of a cluster is defined. Given the para-
meters: m, the minimal number of points considered as a cluster, x, the positions
of all points, and n, the dimension of the positions, the Eps is calculated as:

Eps =

(
n∏

d=1

(max(xd) − min(xd)) × k × Γ (N))/M

)1/n

(10)

where Γ (a) =
∫ ∞
0

e−tta−1dt, N = 0.5n + 1 and M = m(π)n/2.
Given an arbitrary point p in the environment, let ds be the distance of p

to its sth nearest neighbor, then the d-neighborhood of p contains exactly s + 1
points for any p in the environment, and the longest distance is set as s dist. If
and only if s dist ≤ Eps and s + 1 ≥ m, the d-neighborhood of p is considered
to be a cluster.

For each cluster Ck, all points of Ck fall into two categories, points inside of
the cluster (core points) and points on the border of the cluster (border points).
Here, the s dist for a point p with the points belong to Ck is recalculated, all
points with the s dist ≤ Eps will be core points, and the rest points will be
border points.
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The position of the gravity center gk for each cluster Ck, is obtained according
to the classification of points. Set the position of a core point pc in Ck as Pkc,
and Pkc = [P d

kc|d = 1, · · · , n], then the coordinate of gk in each dimension d is
calculated as:

gd
k =

∑
P d

kc

N
(11)

where N is the number of core points in cluster Ck.

4.3 Simulation Results

The interaction between cells and environment: The population evolution of the
VEBAM has been simulated and it is illustrated in Fig. 2. The evolution process
proceeds 100 steps, featuring the swarming of the cells to the highlighted areas
where the nutrient level is high, and Fig. 2 also illustrates that bacteria have
the trend to approach the nutrient, avoiding the toxin in the evolution process.
If they could not consume enough nutrient in their ambient environment, they
will be eliminated gradually.

At the beginning, a population of 100 cells was distributed evenly [16] in
the environment. The highlighted parts in Fig. 2(a) indicate the nutrient. The
quorum sensing was switched “on” at or before t = 20, as shown in Fig. 2(b).
From then, the cell steadily produced a small amount of the quorum sensing
signaling molecule, autoinducer, that can freely diffuse in and out of the cell. At
t = 40, three clusters have been identified by the three more highlighted parts
in Fig. 2(c). However, the population densities of the top two clusters were low,
therefore, most of the autoinducer molecules were washed out and dispersed in
the environment by diffusion. That is, at a low cell density, the autoinducer is
synthesized at basal levels and diffuses into the surrounding medium, where it
is diluted. Much clearer features of quorum sensing are shown in Fig. 2(d), in
which the cells in two most highlighted clusters sending autoinducers. When the
nutrient is consumed gradually, the quorum sensing is no longer functioned and
the active individuals have no effect to each other.

The modification of available nutrient in accordance with the interaction in-
dicated in Fig. 2, without the artificial add-on of autoinducers in the simulation
studies, is illustrated in Fig. 3.
Comparison of simulations with and without quorum sensing mechanism: The
simulation study of the bacterial foraging behavior without quorum sensing
mechanism is undertaken for comparison. Figures 4 and 5 demonstrate the dif-
ferences of population evolution and their influence to the environment in these
two cases, respectively. Three characteristics were featured in Fig. 4: the total
population, active population and inactive population of cells. Throughout the
process of 100 steps, the total population in the case with quorum sensing is
lower than that without it. However, the inactive population is also lower and
the peak of active population is much higher than the one without quorum sens-
ing. The simulation results shown in Fig. 4 is consistent with our understanding
of biological systems.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Individual-Based Modeling of Bacterial Foraging with Quorum Sensing 287

(a) t=1 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Fig. 2. The interaction between cells and environment in 100 steps

The available nutrient in the environment and that obtained by active and
inactive cells are shown in Fig. 5. It was calculated using the following equation:

Nutrient =
300∑

i=1

300∑

j=1

f(xi, yj)

where xi, yj ∈ [0, 30], and f(xi, yj) ≥ 0.
There is no significant difference between the total nutrient lost in the two

cases with and without quorum sensing. However, the energy of active cells with
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Fig. 3. Environmental change in 100 steps

quorum sensing is much less than the one without, during the peak period of
active population as shown in Fig. 4. This result indicates that cells with the
quorum sensing mechanism are able to achieve a higher population level with
less nutrient consumed than that achieved without quorum sensing.
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4.4 Discussion

The rules for the interaction between the environment and bacteria provide a
flexible mechanism for nutrient consumption calculation and bacterial status up-
dating. The bacterial swimming mechanisms are a combination of a rule-based
system and stochastic searches. Furthermore, the population modeling includes
the rules for initialization, reproduction and termination of bacteria. With these
rules which can be specified while used to simulate different biological systems,
the VEBAM is a generic and expandable IbM for computation of bacterial for-
aging patterns, providing a fundamental framework for modeling and simula-
tion studies of a range of bacterial behaviors, and also a scheme which could
be constantly updated, such as the add-on of quorum sensing discussed in this
paper.

The difference of the situations with and without quorum sensing mechanism
is clearly indicated in the simulation. More fundamental results can be obtained
if the parameters are chosen from a wider range, however, this is beyond the
scope of this paper.

5 Conclusions

The paper has presented the simulation results of quorum sensing using an ex-
isting individual-based model, VEBAM, which is for modeling bacterial foraging
behaviors in time-varying environments. The details of VEBAM have been intro-
duced. The quorum sensing mechanism has been successfully incorporated into
this model and also evaluated in the simulation study which includes modeling
a group of bacteria in an evolution process of finite simulation time. A density-
based clustering algorithm is adopted to classify the clusters, which assists to
identify the timing of quorum sensing switching. The gravity center of each clus-
ter also provides important information for sending and diffusing autoinducer
in the environment. The simulation results show that this IbM-based approach
is able to provide a plausible methodology to simulate the bacterial foraging with
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the quorum sensing mechanism investigated in this paper. The validation of this
model, as well as the comparison between the results obtained by this model
and previous approaches, will be undertaken in the future.
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Abstract. The Bio-basis Function Neural Network (BBFNN) is a novel
neural architecture for peptide classification that makes use of amino acid
mutation matrices and a similarity function to model protein peptide
data without encoding. This study presents an Evolutionary Bio-basis
network (EBBN), an extension to the BBFNN that uses a self adapting
Evolution Strategy to optimise a problem specific substitution matrix
for much improved model performance. The EBBN is assessed against
BBFNN and multi layer perceptron (MLP) models using three datasets
covering cleavage sites, epitope sites, and glycoprotein linkage sites. The
method exhibits statistically significant improvements in performance for
two of these sets.

1 Introduction

1.1 Background

The study of interactions between proteins within the cell is a major topic of sys-
tems biology. Such interactions commonly depend on the successful recognition
of suitable functional sites which support them. This recognition process uses
the information contained in the 3D conformations and primary structures of
the proteins involved. There are many kinds of functional sites which have been
examined, including those for protease cleavage, glycosylation, phosphorylation,
acetylation and enzymatic catalysis.

Work on the identification of functional sites typically uses sets of fixed length
short peptides (short amino acid chains from a protein). These peptides are
classified as either functional or non-functional by the trained system. For cases
such as protease cleavage sites, the actual functional site will be between two of
the residues. In post translational modifications, such as phosphorylation, the
functional site is a single residue within the peptide.

A large number of techniques have been applied to functional site recogni-
tion. These can be broadly grouped into frequency based, rule based, statistical
modelling, and machine learning techniques. Frequency based techniques were
the first to be applied using computers and, along with rule based approaches,
are simple to interpret. Statistical techniques such as hidden Markov Models
(HMMs) and machine learning approaches such as neural networks can attain
higher prediction accuracy in many cases.
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1.2 Amino Acid Substitution Matrices

The Bio-basis function neural network (BBFNN), defined in [1], makes use of an
amino acid substitution matrix to calculate similarity values between input and
Bio-basis peptides. These matrices, developed by Dayhoff and others [2], esti-
mate the probability of mutations between amino acids for a given evolutionary
distance. For a set of protein sequences, odds values are calculated for the ob-
served probability of mutation from one amino acid into the other, divided by
expected mutation rate (the product of the frequencies of these amino acids i
and j). These values are presented in logarithmic form such that the calculations
for sequence similarity are additive rather than multiplicative:

Mi,j = log2

(
qi,j

pipj

)

The selection of a substitution matrix for use with a BBFNN is a difficult
decision which can influence performance since it alters the transformation from
input into feature space. Currently a trial and error approach is adopted in which
performance statistics using a variety of standard matrices are compared, the
best then being chosen. This is a time consuming process; the current implemen-
tation of the BBFNN includes 15 matrices, excluding variation of evolutionary
distances.

The PAM, BLOSUM[3], GONNET [4] and other substitution matrices are
constructed using all available sequence data, giving rise to probabilities of mu-
tation averaged across all species, protein functions and both functional and
non-functional regions. Whilst this generality is a desirable trait for common
sequence searching and alignment tasks it is questionable whether it is appropri-
ate for discriminatory use in a BBFNN applied to a specific classification task.
Amino acid frequencies and mutations can vary greatly from the average for
all sequences. It is reasonable therefore to expect that problem specific matrices
could improve BBFNN classification results on the specific datasets by represent-
ing the ‘closeness’ of amino acids in relation to maintaining a required protein
primary sequence structure, e.g. for enzyme catalytic activity, or 3-D formation
e.g. for protein disorder prediction.

Generating problem specific matrices is certainly possible by limiting the data
from which a matrix is produced to the type of peptide we are trying to classify,
or transforming the target frequencies of a general matrix [5]. It is reasonable to
expect that such a matrix would result in higher Bio-basis scores for functional
sites as it would represent the conserved mutations of these sites. PHAT, a
transmembrane-specific matrix, was shown to outperform the general matrices
in transmembrane specific searches [6].

An alternative to working forward from sequence data to create a problem
specific matrix is to start with a random or standard matrix and work backwards
from classifier results to optimise the matrix. Research is ongoing into two such
methods of optimisation. The first, which will be discussed in this paper, uses
an evolutionary computation approach.
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2 Methods and Data

In this paper we describe the Evolutionary Bio-basis Network (EBBN), an ex-
tension to the BBFNN which retains the benefits of the original architecture,
adding an Evolutionary framework for the generation of an optimised problem
specific amino acid substitution matrix.

2.1 Network Structure

The EBBN maintains the basic structure of the BBFNN as described in [1]. l
input nodes accept input peptides which are l amino acids in length. The input
peptides are delivered to each of the N bio-basis neurons in the second layer
of the network. Each bio-basis neuron has an accompanying support peptide
taken from the training data. At each bio-basis neuron the bio-basis function is
applied; the incoming peptide is compared to the support peptide using an amino
acid substitution matrix and the resulting value is normalised. The outputs of
the bio-basis neurons are passed via multiplicative weighted links to an output
neuron, giving an output y . The system can be represented mathematically as
below:

y =
N∑

n=1

wnΦ(x, zn)

Where y ∈ � is the output, N is the number of bio-basis neurons, wn is the
weight between the nth bio-basis neuron and the output neuron, Φ(x, zn) is the
bio-basis function applied to input peptide x using support peptide zn. Optimi-
sation of weights takes place the least squares method with matrix pseudo-inverse
[7].

2.2 Evolution Strategy

Evolutionary Algorithms (EAs) have been applied to the optimisation of neural
network systems for many years [8]. Various approaches have been used for
the optimisation of structural hyperparameters and connection weights across
a broad range of network topologies. In this study we optimise both of these
aspects with traditional non-evolutionary methods. We choose to apply an EA
to the optimisation of the amino acid distance matrix only, so that it can be
studied independently of structural changes etc.

The distance matrix is evolved using a (μ + λ)-Evolution Strategy with self
adaptation [9]. Evolution strategies have been used for a multitude of optimisa-
tion problems, including those in bioinformatics such as parameter estimation for
biochemical pathways, where they were found to outperform other algorithms [10].
The (μ + λ)-ES in particular was chosen for its ability to escape local minima.

A similarity matrix is represented as a vector of 400 real numbers v. We
allow asymmetric similarities, as in [5]. This vector, together with a vector of
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strategy parameters σ, and fitness function value F (v), make up a possible
solution αk = (vk, σk, F (yk)).

A pool of μ possible solutions are created as initial parents, with random
values from a standard Gaussian distribution of v ∼ N(0, 1). Mutation is car-
ried out additively, with a value drawn from a standard Gaussian distribution,
multiplied by mutation strength σi, added to the previous value. i is the in-
dex of the data parameter which is being mutated, thus there are 400 strat-
egy parameters per solution. The mutated data vector is v̂ = v + u, where
u = (σ1N1(0, 1), . . . , σ400N400(0, 1)).

The mutation strengths, σ are self adapted during evolution; initialised with
random values σi ∼ N(0, 1), they are mutated multiplicatively using the ex-
tended log-normal operator described in [9]. In addition, the mutation vector is
scaled by a random multiplier to give the new parameter vector σ̂ as below.

σ̂ = exp (τ0N0(0, 1)) . (σ1 exp (τN1(0, 1)) , . . . , σ400 exp (τN400(0, 1)))

τ is the learning parameter controlling the parameter-wise mutation rate,
whereas τ0 controls the mutative multiplier. Here τ = 1/

√
40 and τ0 = 1/

√
800,

as suggested by studies summarised in [9].
Marriage of solutions generates offspring by discrete recombination; data val-

ues are selected randomly from 2 solutions which have been chosen randomly
from the pool of μ parents. This process is repeated to create λ offspring.
Crossover of the mutation parameters is (μ/μ) intermediate, i.e. child vectors
receive the mean σi calculated from the entire parent population.

All solutions are evaluated by training a network on the training set. In this
study the fitness function F (yk) has been chosen as the area under the ROC
curve for the model. The ROC curve is a plot of the fraction of true positive
predictions against the fraction of false positive predictions, for varying classifica-
tion thresholds. The area under the curve has been shown to be non-parametric
and is used here as a robust measure of the performance of the model [14]. Se-
lection is elitist, the μ parents selected for the next generation are the highest
performing from the entire population of μ + λ solutions.

Stopping is controlled by a validation set. Evolution is stopped when the
mean performance of the population on the validation set does not improve for
20 generations, i.e. 20λ candidate solutions have failed to produce a fitness value
higher than the population mean. The highest performing solution at the last
increase in mean performance on the validation set is selected to give the final
evolved matrix.

2.3 Datasets

This paper uses five previously presented datasets to compare performance of the
EBBN with BBFNN and MLP models. These cover HIV cleavage sites (HIV),
glycoprotein linkage sites (GAL) and T-cell epitope prediction (TCL).

HIV - During the lifecycle of HIV, precursor polyproteins are cleaved by HIV
protease. Disruption of cleavage ability causes non-infectious, imperfect virus
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replication and is therefore a promising target for anti AIDS drugs. Reliable
identification of HIV protease cleavage sites is highly important to developing
anti-viral drugs for HIV. The dataset presented in [11] consists of 8-residue
peptides from HIV protease marked as cleavable or non-cleavable. There are
362 peptides of which 114 are positive, cleavage sites and 248 are negative, non
cleavable sites.

GAL - Glycoproteins are an important subset of proteins with a high level of
potential pharmacological significance. Carbohydrate groups attached to glyco-
proteins affect the solubility and thermal stability and are implicated in impor-
tant biological functions such as controlling uptake of glycoproteins into cells.
This provides a new possibility for targeting drugs, the design of which requires
an understanding of the linkage processes of glycoproteins. Prediction of linkage
sites is an important step. Chou et al. [12] presented a dataset of 302 9-residue
peptides, of which 190 are linkage sites and 112 non-linkage sites.

TCL - T-cells are a critical part of the immune response to viral infection.
Epitopes are sites on viral proteins that are recognised and bound by the T-cell
receptor. The TCL dataset consists of 202 10-residue peptides of which 36 are
positive T-cell epitope sequences, the remaining 167 are non-epitope sequences.
This data was presented in [13].

2.4 Experimental Procedure and Statistics

Experiments are carried out using a 5-fold cross validation approach. The data is
split randomly into 5 folds with 4 folds being used as a training set for evolution
and network training and the remaining fold being used to assess performance.
Training and testing is carried out 5 times with each fold held out for testing on
one occasion. The entire procedure is repeated 10 times with means and standard
deviations taken for assessment of overall performance.

Five statistics will be used to assess the performance of the system. TNf and
TPf are the fractions of true, correct classifications made on the positive and
negative test cases respectively. Summary statistics used are the total accuracy
across all classes (ACC), the Matthews Correlation Coefficient (MCC) and the
area under the ROC curve for the model (AUR).

2.5 Hyperparameter Selection

Population parameters where λ = μ, λ = 5μ and μ = 10λ were examined for
varying values of μ such that total population sizes in the range 1 ≤ μ+λ ≤ 300
were covered.

It was found that the mean AUR value tends to increase as population size is
increased. Figure 1 shows the graphs for the λ = 5μ case, displaying continual
but diminishing increases of the AUR value as population size is increased. Note
that the time taken to complete a cross validation run tends towards a linear
relationship with population size, as might be expected since an increase of
P population members requires P further fitness evaluations per generation. As
population size is increased the number of generations remains roughly constant,
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the termination condition being met at a similar generation in each case. The
mean fitness attained is however higher for larger populations. This is to be
expected as the search space is of high dimensionality with the potential for
many local optima. A larger population size likely enables the algorithm to
avoid becoming trapped in these local optima.

Fig. 1. Effects of Varying Population Size

μ = 10 and λ = 100 have been chosen as the ES population parameters. This
choice represents a trade off between performance and execution time.

The number of bio-basis neurons, N , is set according to prior knowledge and
experiment. Although performance generally increases with increasing numbers
of bio-basis neurons, the number is limited by the availability of positive ex-
amples in the training dataset since we only use positive training examples as
bio-basis support peptides, a choice that has been shown to give good perfor-
mance in previous work with BBFNNs. Peptides chosen for bio-basis neurons
are not used in the weight training stage, therefore we must be sure that enough
positive peptides remain. Based on these limits we use a rule of thumb that the
value of N should be 30 − 50% of the total number of positive peptides in the
training set.

Figure 2 summarises an experiment carried out on the GAL dataset to verify
this assumption. We clearly see the initial increase in accuracy as the number
of basis neurons grows. From around 35 to 60 basis neurons the graph flattens,
but with some fluctuations. As we increase the value of N further, performance
steadily reduces. Computational cost appears to increase linearly as N is raised.
Fluctuations in the execution time graph of Figure 2 are due to the stochastic
nature of the evolution strategy and the fact that experiments were, unavoidably,
run on machines open to some interactive use.

The number of positive training examples in the HIV and GAL datasets is
similar and so 50 bio-basis neurons are used in each case. In the TCL case, there
are fewer positive training examples so N = 20 is used.
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Fig. 2. Effects of Varying Number of Basis Neurons

2.6 BBFNN and MLP Comparisons

A standard BBFNN as first described in [1] is used for comparison purposes.
The number of bio-basis neurons, N , is kept in line with that used by the EBBN
as it is limited by the same factors.

A multi layer perceptron (MLP) is used for additional comparison. Datasets
are pre-processed using a distributed encoding in which every possible amino acid
is encoded by a 20 bit binary string, such that these strings are orthonormal [15].
An 8mer peptide is thus converted into a 160 bit binary vector by concatenating
the appropriate bit-strings for each amino acid.

The MLP used consists of 3 fully interconnected layers. The number of input
neurons is fixed according to the number of bits in the encoded input strings.
The hidden layer contains 50 hidden neurons, chosen according to previous ex-
periments with these datasets. There is a single output layer with an associated
classification threshold. Weight training is accomplished using a standard feed-
forward, back propagation technique.

3 Results and Discussion

Table 1 details the performance of the EBBN, BBFNN and MLP models on the
five datasets. Unbracketed figures are means calculated from the cross validation
runs. Figures in brackets are the corresponding standard deviations.

In the GAL case the EBBN is strongest in all statistics but TNf. In the
HIV case it has the highest values for all statistics. This seems to indicate that
for these two datasets the EBBN outperforms the other 2 models. Standard
deviations are broadly in line with those of the BBFNN.

Table 2 summarises t-tests carried out on the AUR values to confirm this
hypothesis. The AUR statistic is chosen as it is resistant to bias from relative
class frequencies and serves as an indicator of the robustness of each classifier.
At the 99% significance level the EBBN outperforms the BBFNN on all except
the TCL set, and the MLP on all except the HIV set.
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Table 1. Classification Performance

Dataset Method TNf TPf ACC MCC AUR

EBBN 93.17 (6.01) 85.89 (9.62) 90.72 (6.49) 0.79 (0.14) 0.95 (0.05)
HIV BBFNN 89.39 (4.65) 79.03 (10.3) 85.80 (4.99) 0.67 (0.11 ) 0.91 (0.05)

MLP 91.16 (5.38) 82.57 (7.86) 88.27 (4.86) 0.72 (0.10) 0.94 (0.04)

EBBN 76.69 (10.1) 89.58 (3.56) 84.77 (4.32) 0.67 (0.10) 0.92 (0.04)
GAL BBFNN 78.55 (10.2) 74.67 (6.79) 76.11 (4.75) 0.52 (0.10 ) 0.84 (0.04)

MLP 60.73 (11.4) 79.36 (9.68) 72.40 (7.33) 0.41 (0.15) 0.79 (0.07)

EBBN 95.11 (3.91) 62.62 (27.4) 88.40 (8.48) 0.60 (0.27) 0.91 (0.10)
TCL BBFNN 94.17 (3.51) 78.57 (12.1) 89.10 (4.45) 0.72 (0.11 ) 0.93 (0.04)

MLP 94.42 (4.68) 32.50 (23.8) 82.90 (5.98) 0.31 (0.24) 0.86 (0.07)

The HIV and GAL datasets are broadly similar in size with 31% and 63%
positive cases respectively. For the TCL set there are 18% positive peptides.
The set is also much smaller, totalling only 202 peptides. The small size and
unbalanced class frequencies represent a difficulty to algorithms that thrive on
the availability of training examples. The MLP displays poor performance in
the TCL case, likely as a result of the 100 dimensional input and subsequent
large number of weights to optimise. The EBBN is also beaten by the BBFNN
on the TCL data. There appears to be insufficient data for the evolution of a
problem specific matrix. Choosing to use a standard substitution matrix would
be a sensible strategy with small datasets.

Table 2. Significance Tests

Dataset Method Conclusion P-value

EBBN vs BBFNN EBBN outperforms BBFNN < 0.0001
HIV EBBN vs MLP Inconclusive at 99% Level 0.0491

BBFNN vs MLP MLP outperforms BBFNN 0.0018

EBBN vs BBFNN EBBN outperforms BBFNN < 0.0001
GAL EBBN vs MLP EBBN outperforms MLP < 0.0001

BBFNN vs MLP BBFNN outperforms MLP < 0.0001

EBBN vs BBFNN Inconclusive at 99% Level 0.1283
TCL EBBN vs MLP EBBN outperforms MLP 0.0016

BBFNN vs MLP BBFNN outperforms MLP < 0.0001

In the HIV case, known to be highly separable using linear systems, the EBBN
is significantly higher performing than the BBFNN, but versus the MLP the
difference is inconclusive. Given that the EBBN can alter the mutation matrix
and therefore the nature of the mapping from feature to linear space it is possible
that it performs more strongly than the BBFNN as it is able to apply a matrix
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that is much simpler than the standard matrices. Indeed, on examination of the
evolved matrices, we notice that they appear to be simple in structure with few
values of significant magnitude.

Of the datasets for which the EBBN is superior it is the GAL dataset which
presents the most interesting results. The summary statistics are considerably
higher than those for the BBFNN and MLP. The EBBN has an 8.66% higher ac-
curacy compared to the BBFNN, which is in turn considerably stronger than the
MLP. This dataset separates the models more than was expected. We hypoth-
esise that the incorporation of mutation knowledge is important to predictors
applied to this problem.

One of the main advantages of the BBFNN is its high speed when compared
with a standard MLP due to the use of an algebraic method to optimise the
weights. The linear classification stage requires a single optimisation step rather
than the iterative feed-forward, back propagation technique in the MLP. The
EBBN carries out (μ + λ)g of these optimisation steps per run, where g is the
number of generations. g is not constant as the ES uses a convergence rule to
control stopping.

With the hyperparameters used in this study, the EBBN was found to be in
the region of 250 times slower to train than the BBFNN on the GAL dataset;
the EBBN taking 12816s per cross validation run vs 48s for the BBFNN. Clearly
where training speed is an issue the standard BBFNN is more appropriate. How-
ever, for static applications where re-training is carried out rarely, such as pre-
diction servers, the additional computational cost is likely to be acceptable given
improved prediction accuracy. Testing costs are identical for both algorithms; a
trained EBBN operates identically to a BBFNN.

In section 2.5, we gave an overview of the effect of varying the population size
and number of hidden neurons on execution times. The increase in computa-
tional cost was linear or sub-linear for increasing population sizes. By reducing
the population size it was possible to obtain a mean AUR value of 0.8938 in
314 seconds. Whilst this statistic is below that obtained when using the tuned
hyperparameters it is still higher than those of the BBFNN or MLP models
(0.84 and 0.79 respectively). It is clear that the population size hyperparameters
offer scope to reduce the execution time of the EBBN to an appropriate amount
without losing all of the benefits in terms of classification performance.

4 Conclusions

This paper has presented a novel algorithm for peptide classification problems,
the Evolutionary Bio-basis Network (EBBN). On two out of three datasets the
EBBN shows a statistically significant improvement compared with the BBFNN
on which it is based.

Dataset size appears to be the primary limitation to the technique, with im-
provements having been noted on datasets of > 200 peptides which have broadly
balanced class frequencies. Accuracy on the smaller dataset of 200 peptides is
not increased, however this dataset is difficult as it also has an imbalance in class
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frequencies. Execution time is highly dependent on the population hyperpara-
meters for the Evolution Strategy which can be tuned to acheive an appropriate
balance between model performance and training cost.

The evolution strategy is clearly a powerful tool that can adapt a large para-
meter vector. An optimised, problem specific matrix can support higher classi-
fication accuracies than standard general matrices when used with the bio-basis
kernel.
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